×

Abelian and derived deformations in the presence of \(\mathbb Z\)-generating geometric helices. (English) Zbl 1262.14017

The paper under review treats deformation theory in noncommutative algebraic geometry. For a Grothendieck category \(\mathcal{C}\) which, via a \(\mathbb{Z}\)-generating sequence \((\mathcal{O}(n))_{n \in \mathbb{Z}}\), is equivalent to the category of “quasi-coherent modules” over an associated \(\mathbb{Z}\)-algebra \(\mathfrak{a}\), the authors show that under suitable cohomological conditions “taking quasi-coherent modules” defines an equivalence between linear deformations of \(\mathfrak{a}\) and abelian deformations of \(\mathcal{C}\). If \((\mathcal{O}(n))_{n \in \mathbb{Z}}\) at the same time a geometric helix in the derived category, it is shown that restricting a (deformed) \(\mathbb{Z}\)-algebra to a “thread” of objects defines a further equivalence with linear deformations of the associated matrix algebra.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
18F10 Grothendieck topologies and Grothendieck topoi

References:

[1] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves. In The Grothendieck Festschrift , Vol. I, Progr. Math. 86, Birkhäuser Boston, Boston 1990, 33-85. · Zbl 0744.14024
[2] M. Artin and J. J. Zhang, Noncommutative projective schemes. Adv. Math. 109 (1994), 228-287. · Zbl 0833.14002 · doi:10.1006/aima.1994.1087
[3] A. I. Bondal and A. E. Polishchuk, Homological properties of associative algebras: the method of helices. Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), No. 2, 3-50; English transl. Russian Acad. Sci. Izv. Math. 42 (1994), No. 2, 219-260 (1994). · Zbl 0847.16010 · doi:10.1070/IM1994v042n02ABEH001536
[4] T. Bridgeland and D. Stern, Helices on del Pezzo surfaces and tilting Calabi-Yau algebras. Adv. Math. 224 (2010), 1672-1716. · Zbl 1193.14022 · doi:10.1016/j.aim.2010.01.018
[5] A. L. Gorodentsev and S. A. Kuleshov, Helix theory. Moscow Math. J. 4 (2004), 377-440. · Zbl 1072.14020
[6] W. Lowen, A generalization of the Gabriel-Popescu theorem. J. Pure Appl. Algebra 190 (2004), 197-211. · Zbl 1051.18007 · doi:10.1016/j.jpaa.2003.11.016
[7] W. Lowen, Obstruction theory for objects in abelian and derived categories. Comm. Algebra 33 (2005), 3195-3223. · Zbl 1099.18008 · doi:10.1081/AGB-200066155
[8] W. Lowen, Algebroid prestacks and deformations of ringed spaces. Trans. Amer. Math. Soc. 360 (2008), 1631-1660. · Zbl 1135.13008 · doi:10.1090/S0002-9947-07-04354-1
[9] W. Lowen and M. Van den Bergh, Hochschild cohomology of abelian categories and ringed spaces. Adv. Math. 198 (2005), 172-221. · Zbl 1095.13013 · doi:10.1016/j.aim.2004.11.010
[10] W. Lowen and M. Van den Bergh, Deformation theory of abelian categories. Trans. Amer. Math. Soc. 358 (2006), 5441-5483. · Zbl 1113.13009 · doi:10.1090/S0002-9947-06-03871-2
[11] A. Polishchuk, Noncommutative proj and coherent algebras. Math. Res. Lett. 12 (2005), 63-74. · Zbl 1074.14002 · doi:10.4310/MRL.2005.v12.n1.a7
[12] A. Polishchuk and A. Schwarz, Categories of holomorphic vector bundles on noncommu- tative two-tori. Comm. Math. Phys. 236 (2003), 135-159. · Zbl 1033.58009 · doi:10.1007/s00220-003-0813-9
[13] J.-P. Serre, Faisceaux algébriques cohérents. Ann. of Math. (2) 61 (1955), 197-278. · Zbl 0067.16201 · doi:10.2307/1969915
[14] J. T. Stafford and M. van den Bergh, Noncommutative curves and noncommutative sur- faces. Bull. Amer. Math. Soc. ( N.S.) 38 (2001), 171-216. · Zbl 1042.16016 · doi:10.1090/S0273-0979-01-00894-1
[15] M. Van den Bergh, Non-commutative quadrics. Preprint 2008. · Zbl 1236.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.