×

Quantum and spectral properties of the Labyrinth model. (English) Zbl 1342.82147

Summary: We consider the Labyrinth model, which is a two-dimensional quasicrystal model. We show that the spectrum of this model, which is known to be a product of two Cantor sets, is an interval for small values of the coupling constant. We also consider the density of states measure of the Labyrinth model and show that it is absolutely continuous with respect to Lebesgue measure for almost all values of coupling constants in the small coupling regime.{
©2016 American Institute of Physics}

MSC:

82D25 Statistical mechanics of crystals
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
28A80 Fractals

References:

[1] Cantat, S., Bers and Hénon, Painlevé and Schrödinger, Duke Math. J., 149, 411-460 (2009) · Zbl 1181.37068 · doi:10.1215/00127094-2009-042
[2] Casdagli, M., Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation, Commun. Math. Phys., 107, 295-318 (1986) · Zbl 0606.39004 · doi:10.1007/BF01209396
[3] Cerovski, V. Z.; Schreiber, M.; Grimm, U., Spectral and diffusive properties of silver-mean quasicrystals in one, two, and three dimensions, Phys. Rev. B, 72, 054203 (2005) · doi:10.1103/PhysRevB.72.054203
[4] Damanik, D.; Embree, M.; Gorodetski, A.; Tcheremchantsev, S., The fractal dimension of the spectrum of the Fibonacci Hamiltonian, Commun. Math. Phys., 280, 499-516 (2008) · Zbl 1192.81151 · doi:10.1007/s00220-008-0451-3
[5] Damanik, D.; Gorodetski, A., Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian, Nonlinearity, 22, 123-143 (2009) · Zbl 1154.82312 · doi:10.1088/0951-7715/22/1/007
[6] Damanik, D.; Gorodetski, A., Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian, Commun. Math. Phys., 305, 221-277 (2011) · Zbl 1232.81016 · doi:10.1007/s00220-011-1220-2
[7] Damanik, D.; Gorodetski, A., The density of states measure of the weakly coupled Fibonacci Hamiltonian, Geom. Funct. Anal., 22, 976-989 (2012) · Zbl 1256.81035 · doi:10.1007/s00039-012-0173-8
[8] Damanik, D.; Gorodetski, A.; Solomyak, B., Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian, Duke Math. J., 164, 1603-1640 (2015) · Zbl 1358.37117 · doi:10.1215/00127094-3119739
[9] Damanik, D.; Gorodetski, A.; Yessen, W., The Fibonacci Hamiltonian · Zbl 1359.81108
[10] Damanik, D.; Munger, P.; Yessen, W., Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients. I. The essential support of the measure, J. Approximation Theory, 173, 56-88 (2013) · Zbl 1283.33005 · doi:10.1016/j.jat.2013.04.001
[11] Even-Dar Mandel, S.; Lifshitz, R., Electronic energy spectra of square and cubic Fibonacci quasicrystals, Philos. Mag., 88, 2261-2273 (2008) · doi:10.1080/14786430802070805
[12] Fillman, J.; Takahashi, Y.; Yessen, W., Mixed spectral regimes for square Fibonacci Hamiltonians, J. Fract. Geom. · Zbl 1370.47033
[13] Ilan, R.; Liberty, E.; Even-Dar Mandel, S.; Lifshitz, R., Electrons and phonons on the square Fibonacci tiling, Ferroelectrics, 305, 15-19 (2004) · doi:10.1080/00150190490462252
[14] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1996)
[15] Klenke, A., Probability Theory: A Comprehensive Course (2014) · Zbl 1295.60001
[16] Lagarias, C.; Pleasants, B., Repetitive Delone sets and quasicrystals, Ergod. Theory Dyn. Syst., 23, 831-867 (2003) · Zbl 1062.52021 · doi:10.1017/S0143385702001566
[17] Lenz, D.; Stollmann, P., An ergodic theorem for Delone dynamical systems and existence of the integrated density of states, J. Anal. Math., 97, 1-24 (2005) · Zbl 1131.37015 · doi:10.1007/BF02807400
[18] Lifshitz, R., The square Fibonacci tiling, J. Alloys Compd., 342, 186-190 (2002) · doi:10.1016/S0925-8388(02)00169-X
[19] Mei, M., Spectra of discrete Schrödingier operators with primitive invertible substitution potentials, J. Math. Phys., 55, 082701 (2014) · Zbl 1302.82112 · doi:10.1063/1.4886535
[20] Mei, M.; Yessen, W., Tridiagonal substitution Hamiltonians, Math. Modell. Nat. Phenom., 9, 204-238 (2014) · Zbl 1309.47031 · doi:10.1051/mmnp/20149514
[21] Palis, J.; Takens, F., Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations (1993) · Zbl 0790.58014
[22] Pollicott, M., Analyticity of dimensions for hyperbolic surface diffeomorphisms, Proc. Am. Math. Soc., 143, 3465-3474 (2015) · Zbl 1346.37037 · doi:10.1090/proc/12477
[23] Queffélec, M., Substitution Dynamical Systems-Spectral Analysis (2010) · Zbl 1225.11001
[24] Reed, M.; Simon, B., Methods of Modern Mathematical Physics I (1990)
[25] Rolof, S.; Thiem, S.; Schreiber, M., Electronic wave functions of quasiperiodic systems in momentum space, Eur. Phys. J. B, 86, 372 (2013) · Zbl 1515.82153 · doi:10.1140/epjb/e2013-40261-6
[26] Sire, C., Electronic spectrum of a 2D quasi-crystal related to the octagonal quasi-periodic tiling, Europhys. Lett., 10, 483-488 (1989) · doi:10.1209/0295-5075/10/5/016
[27] Sire, C.; Mosseri, R.; Sadoc, J.-F., Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling, J. Phys., 55, 3463-3476 (1989) · doi:10.1051/jphys:0198900500240346300
[28] Sütő, A., The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys., 111, 409-415 (1987) · Zbl 0624.34017 · doi:10.1007/BF01238906
[29] Thiem, S.; Schreiber, M., Generalized inverse participation numbers in metallic-mean quasiperiodic systems, Eur. Phys. J. B, 84, 415 (2011) · doi:10.1140/epjb/e2011-20323-7
[30] Thiem, S.; Schreiber, M., Quantum diffusion in separable d-dimensional quasiperiodic tilings
[31] Thiem, S.; Schreiber, M., Renormalization group approach for the wave packet dynamics in golden-mean and silver-mean Labyrinth tilings, Phy. Rev. B, 85, 224205 (2012) · doi:10.1103/PhysRevB.85.224205
[32] Thiem, S.; Schreiber, M., Similarity of eigenstates in generalized Labyrinth tilings, J. Phys. Conf. Ser., 226, 012029 (2010) · doi:10.1088/1742-6596/226/1/012029
[33] Thiem, S.; Schreiber, M., Wave functions, quantum diffusion and scaling exponents in golden-mean quasiperiodic tilings, J. Phys.: Condens. Matter, 25, 075503 (2013) · doi:10.1088/0953-8984/25/7/075503
[34] Takahashi, Y., Products of two Cantor sets · Zbl 1366.28005
[35] Yessen, W., Spectral analysis of tridiagonal Fibonacci Hamiltonians, J. Spectral Theory, 3, 101-128 (2013) · Zbl 1276.47036 · doi:10.4171/JST/39
[36] Yuan, H. Q.; Grimm, U.; Repetowicz, P.; Schreiber, M., Energy spectra, wave functions and quantum diffusion for quasi periodic systems, Phys. Rev. B, 62, 15569 (2000) · doi:10.1103/PhysRevB.62.15569
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.