×

Higher codimension singularities constructing Yang-Mills tree amplitudes. (English) Zbl 1342.81612

Summary: Yang-Mills tree-level amplitudes contain singularities of codimension one like collinear and multi-particle factorizations, codimension two such as soft limits, as well as higher codimension singularities. Traditionally, BCFW-like deformations with one complex variable were used to explore collinear and multi-particle channels. Higher codimension singularities need more complex variables to be reached. In this paper, along with a discussion on higher singularities and the role of the global residue theorem in this analysis, we specifically consider soft singularities. This is done by extending Risager’s deformation to a \(\mathbb{C}^2\)-plane, i.e., two complex variables. The two-complex-dimensional deformation is then used to recursively construct Yang-Mills tree amplitudes.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
32A27 Residues for several complex variables

References:

[1] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP09 (2004) 006 [hep-th/0403047] [INSPIRE]. · doi:10.1088/1126-6708/2004/09/006
[2] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE]. · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[3] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE]. · doi:10.1103/PhysRevLett.94.181602
[4] Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys.322 (2007) 1587 [arXiv:0704.2798] [INSPIRE]. · Zbl 1122.81077 · doi:10.1016/j.aop.2007.04.014
[5] A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev.D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].
[6] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE]. · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[7] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE]. · Zbl 1271.81098 · doi:10.1007/JHEP03(2010)020
[8] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[9] M. Bullimore, L. Mason and D. Skinner, MHV diagrams in momentum twistor space, JHEP12 (2010) 032 [arXiv:1009.1854] [INSPIRE]. · Zbl 1294.81094 · doi:10.1007/JHEP12(2010)032
[10] N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and grassmannian dualities, JHEP01 (2011) 049 [arXiv:0912.4912] [INSPIRE]. · Zbl 1214.81267 · doi:10.1007/JHEP01(2011)049
[11] M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev.D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].
[12] L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/045
[13] N. Arkani-Hamed, F. Cachazo and C. Cheung, The grassmannian origin of dual superconformal invariance, JHEP03 (2010) 036 [arXiv:0909.0483] [INSPIRE]. · Zbl 1271.81099 · doi:10.1007/JHEP03(2010)036
[14] M. Bullimore, L. Mason and D. Skinner, Twistor-strings, grassmannians and leading singularities, JHEP03 (2010) 070 [arXiv:0912.0539] [INSPIRE]. · Zbl 1271.81101 · doi:10.1007/JHEP03(2010)070
[15] N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the grassmannian, JHEP01 (2011) 108 [arXiv:0912.3249] [INSPIRE]. · Zbl 1214.81181 · doi:10.1007/JHEP01(2011)108
[16] J. Drummond and L. Ferro, Yangians, grassmannians and T-duality, JHEP07 (2010) 027 [arXiv:1001.3348] [INSPIRE]. · Zbl 1290.81062 · doi:10.1007/JHEP07(2010)027
[17] J. Drummond and L. Ferro, The yangian origin of the grassmannian integral, JHEP12 (2010) 010 [arXiv:1002.4622] [INSPIRE]. · Zbl 1294.81101 · doi:10.1007/JHEP12(2010)010
[18] G. Korchemsky and E. Sokatchev, Superconformal invariants for scattering amplitudes in N = 4 SYM theory, Nucl. Phys.B 839 (2010) 377 [arXiv:1002.4625] [INSPIRE]. · Zbl 1206.81114 · doi:10.1016/j.nuclphysb.2010.05.022
[19] K. Risager, A direct proof of the CSW rules, JHEP12 (2005) 003 [hep-th/0508206] [INSPIRE]. · doi:10.1088/1126-6708/2005/12/003
[20] H. Elvang, D.Z. Freedman and M. Kiermaier, Proof of the MHV vertex expansion for all tree amplitudes in N = 4 SYM theory, JHEP06 (2009) 068 [arXiv:0811.3624] [INSPIRE]. · doi:10.1088/1126-6708/2009/06/068
[21] S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049. · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[22] F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [INSPIRE].
[23] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE]. · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[24] N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP04 (2008) 076 [arXiv:0801.2385] [INSPIRE]. · Zbl 1246.81103 · doi:10.1088/1126-6708/2008/04/076
[25] F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [INSPIRE].
[26] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming tree amplitudes in general relativity, JHEP11 (2007) 057 [hep-th/0702032] [INSPIRE]. · Zbl 1245.83012 · doi:10.1088/1126-6708/2007/11/057
[27] S.J. Parke and T. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett.56 (1986) 2459 [INSPIRE]. · doi:10.1103/PhysRevLett.56.2459
[28] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, U.S.A. (1994). · Zbl 0836.14001
[29] L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
[30] H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in N = 4 SYM Theory, JHEP04 (2009) 009 [arXiv:0808.1720] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/009
[31] C. Boucher-Veronneau and A.J. Larkoski, Constructing amplitudes from their soft limits, JHEP09 (2011) 130 [arXiv:1108.5385] [INSPIRE]. · Zbl 1301.81107 · doi:10.1007/JHEP09(2011)130
[32] D. Nandan and C. Wen, Generating all tree amplitudes in N = 4 SYM by inverse soft limit, JHEP08 (2012) 040 [arXiv:1204.4841] [INSPIRE]. · Zbl 1397.81186 · doi:10.1007/JHEP08(2012)040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.