Skip to main content
Log in

Higher codimension singularities constructing Yang-Mills tree amplitudes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Yang-Mills tree-level amplitudes contain singularities of codimension one like collinear and multi-particle factorizations, codimension two such as soft limits, as well as higher codimension singularities. Traditionally, BCFW-like deformations with one complex variable were used to explore collinear and multi-particle channels. Higher codimension singularities need more complex variables to be reached. In this paper, along with a discussion on higher singularities and the role of the global residue theorem in this analysis, we specifically consider soft singularities. This is done by extending Risager’s deformation to a \( {{\mathbb{C}}^2} \)-plane, i.e., two complex variables. The two-complex-dimensional deformation is then used to recursively construct Yang-Mills tree amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].

    Article  ADS  Google Scholar 

  2. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Bullimore, L. Mason and D. Skinner, MHV diagrams in momentum twistor space, JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev. D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Arkani-Hamed, F. Cachazo and C. Cheung, The grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Bullimore, L. Mason and D. Skinner, Twistor-strings, grassmannians and leading singularities, JHEP 03 (2010) 070 [arXiv:0912.0539] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the grassmannian, JHEP 01 (2011) 108 [arXiv:0912.3249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Drummond and L. Ferro, Yangians, grassmannians and T-duality, JHEP 07 (2010) 027 [arXiv:1001.3348] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Drummond and L. Ferro, The yangian origin of the grassmannian integral, JHEP 12 (2010) 010 [arXiv:1002.4622] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Korchemsky and E. Sokatchev, Superconformal invariants for scattering amplitudes in N = 4 SYM theory, Nucl. Phys. B 839 (2010) 377 [arXiv:1002.4625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [INSPIRE].

    Article  ADS  Google Scholar 

  20. H. Elvang, D.Z. Freedman and M. Kiermaier, Proof of the MHV vertex expansion for all tree amplitudes in N = 4 SYM theory, JHEP 06 (2009) 068 [arXiv:0811.3624] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049.

    Article  MathSciNet  ADS  Google Scholar 

  22. F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [INSPIRE].

  23. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [INSPIRE].

  26. P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming tree amplitudes in general relativity, JHEP 11 (2007) 057 [hep-th/0702032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.J. Parke and T. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, U.S.A. (1994).

    MATH  Google Scholar 

  29. L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].

  30. H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in N = 4 SYM Theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. C. Boucher-Veronneau and A.J. Larkoski, Constructing amplitudes from their soft limits, JHEP 09 (2011) 130 [arXiv:1108.5385] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Nandan and C. Wen, Generating all tree amplitudes in N = 4 SYM by inverse soft limit, JHEP 08 (2012) 040 [arXiv:1204.4841] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayeh Rajabi.

Additional information

ArXiv ePrint: 1101.5208

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajabi, S. Higher codimension singularities constructing Yang-Mills tree amplitudes. J. High Energ. Phys. 2013, 37 (2013). https://doi.org/10.1007/JHEP08(2013)037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)037

Keywords

Navigation