×

Steadily propagating waves of a chemotaxis model. (English) Zbl 1316.92013

Summary: This paper studies the existence, asymptotic decay rates, nonlinear stability, wave speed and chemical diffusion limits of traveling wave solutions to a chemotaxis model describing the initiation of angiogenesis and reinforced random walk. By transforming the chemotaxis system, via a Hopf-Cole transformation, into a system of conservation laws, the authors studied the traveling wave solutions of the transformed system in previous papers. One of the purposes of this paper is to transfer the results of the transformed system to the original Keller-Segel chemotaxis model. It turns out that only partial results of the transformed system have physical meaning when they are passed back to the original system. Thus the transformed system is not entirely equivalent to the original system. Particularly the chemical growth rate parameter appeared in the original system vanishes in the transformed system. Hence to understand the role of this parameter, one has to go back to the original system. Moreover, we establish some new results on zero chemical diffusion limits of traveling wave solutions. Numerical simulations of steadily propagating waves are shown.

MSC:

92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Adler, J., Chemotaxis in bacteria, Science, 153, 708 (1966)
[2] Adler, J., Chemoreceptors in bacteria, Science, 166, 1588 (1969)
[3] Berezovskaya, F. S.; Novozhilov, A. S.; Karev, G. P., Families of traveling impulses and fronts in some models with cross-diffusion, Nonlinear Anal. Real World Appl., 9, 1866 (2008) · Zbl 1156.35453
[4] Chaplain, M. A.J., Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modeling of the stages of tumor development, Math. Comput. Modeling, 23, 47 (1996) · Zbl 0859.92012
[5] Corrias, L.; Perthame, B.; Zaag, H., A chemotaxis model motivated by angiogenesis, C.R. Acad. Sci. Paris. Ser. I, 336, 141-146 (2003) · Zbl 1028.35062
[6] Corrias, L.; Perthame, B.; Zaag, H., Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan J. Math., 72, 1 (2004) · Zbl 1115.35136
[7] Fenichel, N., Geometric singular perturbation theory of ordinary differential equations, J. Differ. Equat., 31, 53 (1979) · Zbl 0476.34034
[8] Funaki, M.; Mimura, M.; Tsujikawa, T., Travelling front solutions arising in a chemotaxis growth model, INSAM Rep., 46, 99 (1999)
[9] Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal., 95, 325 (1986) · Zbl 0631.35058
[10] Horstmann, D.; Stevens, A., A constructive approach to traveling waves in chemotaxis, J. Nonlinear Sci., 14, 1 (2004) · Zbl 1063.35071
[11] C.K.R.T. Jones, Geometric singular perturbation theory, in: J. Russell (Ed.), Dynamical Systems, Montecatini Terme, Italy, 1994. 2nd session of the Centro Internazionale Matematico Estivo (CIME), Springer, Berlin.; C.K.R.T. Jones, Geometric singular perturbation theory, in: J. Russell (Ed.), Dynamical Systems, Montecatini Terme, Italy, 1994. 2nd session of the Centro Internazionale Matematico Estivo (CIME), Springer, Berlin.
[12] Kawashima, S.; Matsumura, A., Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Commun. Pure Appl. Math., 47, 1547 (1994) · Zbl 0820.73030
[13] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399 (1970) · Zbl 1170.92306
[14] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 225 (1971) · Zbl 1170.92307
[15] Keller, E. F.; Segel, L. A., Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 26, 235 (1971) · Zbl 1170.92308
[16] Levine, H. A.; Sleeman, B. D.; Nilsen-Hamilton, M., Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42, 3, 195 (2001) · Zbl 0977.92013
[17] Levine, H. A.; Sleeman, B. D., A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57, 683 (1997) · Zbl 0874.35047
[18] Li, D.; Li, T.; Zhao, K., On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21, 1631 (2011) · Zbl 1230.35070
[19] Li, T., Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40, 1058 (2008) · Zbl 1177.35133
[20] Li, T.; Wang, Z. A., Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM. J. Appl. Math., 70, 1522 (2009) · Zbl 1206.35041
[21] Li, T.; Wang, Z. A., Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20, 1967 (2010) · Zbl 1213.35081
[22] Li, T.; Wang, Z. A., Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differ. Equat., 250, 1310 (2011) · Zbl 1213.35109
[23] Li, Y., The existence of traveling waves in a biological model for chemotaxis, Acta Math. Appl. Sinica, 27, 123 (2004), (in Chinese) · Zbl 1052.92007
[24] Liu, T. P., Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 328, 1 (1986)
[25] Liu, T. P.; Zeng, Y., Time-asymptotic behavior of wave propagation around a viscous shock profile, Commun. Math. Phys., 290, 23 (2009) · Zbl 1190.35033
[26] Lui, R.; Wang, Z. A., Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61, 739 (2010) · Zbl 1205.92007
[27] Meyries, M., Local well posedness and instability of travelling waves in a chemotaxis model, Adv. Differ. Equat., 16, 31 (2011) · Zbl 1228.35056
[28] Nagai, T.; Ikeda, T., Traveling waves in a chemotaxis model, J. Math. Biol., 30, 169 (1991) · Zbl 0742.92001
[29] Rosen, G., Analytically solution to the initial-value problem for traveling bands of chemotaxis bacteria, J. Theor. Biol., 49, 311 (1975)
[30] Rosen, G., Steady-state distribution of bacteria chemotaxis toward oxygen, Bull. Math. Biol., 40, 671 (1978) · Zbl 0395.92008
[31] Rosen, G., Theoretical significance of the condition \(\delta = 2 \mu\) in bacterial chemotaxis, Bull. Math. Biol., 45, 151 (1983) · Zbl 0505.92025
[32] Rosen, G.; Baloga, S., On the stability of steadily propagating bands of chemotactic bacteria, Math. Biosci., 24, 273 (1975) · Zbl 0307.92013
[33] Szepessy, A.; Xin, Z. P., Nonlinear stability of viscous shock waves, Arch. Rat. Mech. Anal., 122, 53 (1993) · Zbl 0803.35097
[34] Wang, Z. A., Wavefront of an angiogenesis model, Discrete Cont. Dyn. Syst-Series B, 17, 8, 2849-2860 (2012) · Zbl 1255.35076
[35] Wang, Z. A.; Hillen, T., Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31, 45 (2008) · Zbl 1147.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.