×

Entropy principle and recent results in non-equilibrium theories. (English) Zbl 1338.82034

Summary: We present the state of the art on the modern mathematical methods of exploiting the entropy principle in thermomechanics of continuous media. A survey of recent results and conceptual discussions of this topic in some well-known non-equilibrium theories (Classical irreversible thermodynamics CIT, Rational thermodynamics RT, Thermodynamics of irreversible processes TIP, Extended irreversible thermodynamics EIT, Rational Extended thermodynamics RET) is also summarized.

MSC:

82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Truesdell, Rational Thermodynamics (1984)
[2] Coleman, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal 13 pp 167– (1963) · Zbl 0113.17802 · doi:10.1007/BF01262690
[3] Coleman, Thermodynamics with internal state variables, J. Chem. Phys 47 pp 597– (1967) · doi:10.1063/1.1711937
[4] Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal 46 pp 131– (1972) · Zbl 0252.76003 · doi:10.1007/BF00250688
[5] Hauser, A historical note on the entropy principle of Müller and Liu, Continuum Mech. Thermodyn 14 pp 223– (2002) · Zbl 0992.80001 · doi:10.1007/s001610100063
[6] Farkas, A Fourier-féle mechanikai elv alkalmazásai, Mathematikai és Természettudományi Értesíto 12 pp 457– (1894)
[7] Müller, On the entropy inequality, Arch. Ration. Mech. Anal 26 pp 118– (1967) · Zbl 0163.46701 · doi:10.1007/BF00285677
[8] Jou, Extended Irreversible Thermodynamics (2010)
[9] Lebon, Understanding Nonequilibrium Thermodynamics (2008)
[10] Jou, Thermodynamics of Fluids Under Flow (2000)
[11] Müller, Rational Extended Thermodynamics (1998)
[12] Lebon, Weakly nonlocal and nonlinear heat transport in rigid solids, J. Non-Equilib. Thermodyn 23 pp 176– (1998) · Zbl 0912.73006 · doi:10.1515/jnet.1998.23.2.176
[13] Casas-Vázquez, Temperature in non-equilibrium states: A review of open problems and current proposals, Rep. Prog. Phys 66 pp 1937– (2003) · doi:10.1088/0034-4885/66/11/R03
[14] Muschik, An amendment to the second law, J. Non-Equilib. Thermodyn 21 pp 175– (1996) · Zbl 0877.73004 · doi:10.1515/jnet.1996.21.2.175
[15] Ván, Weakly nonlocal irreversible thermodynamics, Ann. Physik 12 pp 142– (2003) · Zbl 1031.80001 · doi:10.1002/andp.200310002
[16] Ván, Weakly Nonlocal non-equilibrium thermodynamics–variational principles and second Law, Applied Wave Mathematics–Selected Topics in Solids, Fluids, and Mathematical Methods pp 153– (2009) · Zbl 1191.74004
[17] Gurtin, Thermodynamics and the possibility of spatial interaction in elastic materials, Arch. Ration. Mech. Anal 19 pp 339– (1965) · Zbl 0146.21106 · doi:10.1007/BF00253483
[18] Dunn, On the thermomechanics of the interstitial working, Arch. Ration. Mech. Anal 88 pp 95– (1985) · Zbl 0582.73004 · doi:10.1007/BF00250907
[19] Cimmelli, An extension of Liu procedure in weakly nonlocal thermodynamics, J. Math. Phys 48 pp 113510:1– (2007) · Zbl 1152.81377 · doi:10.1063/1.2804753
[20] Cimmelli, A generalized Coleman-Noll procedure for the exploitation of the entropy principle, Proc. R. Soc. A 466 pp 911– (2010) · Zbl 1195.82068 · doi:10.1098/rspa.2009.0383
[21] Cimmelli, Exploitation of the entropy principle: Proof of Liu Theorem if the gradients of the governing equations are considered as constraints, J. Math. Phys 52 pp 023511:1– (2011) · Zbl 1314.80001 · doi:10.1063/1.3549119
[22] Fabrizio, Thermodynamics of nonlocal materials: Extra fluxes and internal powers, Continuum Mech. Thermodyn 23 pp 509– (2011) · Zbl 1272.74009 · doi:10.1007/s00161-011-0193-x
[23] Amendola, Thermodynamics of a non-simple heat conductor with memory, Q. Appl. Math 69 pp 787– (2011) · Zbl 1235.80006 · doi:10.1090/S0033-569X-2011-01228-5
[24] De Groot, Non-Equilibrium Thermodynamics (1962)
[25] Ván, Exploiting the second law in weakly non-local continuum physics, Period. Polytech. Ser. Mech. Eng 49 pp 79– (2005)
[26] Öttinger, Beyond Equilibrium Thermodynamics (2005)
[27] Hütter, Quasi-Linear versus Potential-Based Formulations of Force-Flux Relations and the GENERIC for Irreversible Processes: Comparisons and Examples, Continuum Mech. Thermodyn 25 pp 803– (2013) · Zbl 1341.80006 · doi:10.1007/s00161-012-0289-y
[28] Grmela, Multiscale Equilibrium and Nonequilibrium Thermodynamics in Chemical Engineering, Adv. Chem. Eng 39 pp 75– (2010) · doi:10.1016/S0065-2377(10)39002-8
[29] Ruggeri, The Entropy Principle from Continuum Mechanics to Hyperbolic Systems of Balance Laws: The Modern Theory of Extended Thermodynamics, Entropy 10 pp 319– (2008) · Zbl 1179.82004 · doi:10.3390/e10030319
[30] Müller, Extended Thermodynamics: A Theory of Symmetric Hyperbolic Field Equations, Entropy 10 pp 477– (2008) · Zbl 1179.80009 · doi:10.3390/e10040477
[31] Jaynes, Information Theory and Statistical Mechanics, Phys. Rev 106 pp 620– (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[32] Jaynes, Information Theory and Statistical Mechanics II, Phys. Rev 108 pp 171– (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.108.171
[33] Pavic, Maximum entropy principle for rarefied polyatomic gases, Phys. A 392 pp 1302– (2013) · doi:10.1016/j.physa.2012.12.006
[34] Boillat, Moment equations in the kinetic theory of gases and wave velocities, Continuum Mech. Thermodyn 9 pp 205– (1997) · Zbl 0892.76075 · doi:10.1007/s001610050066
[35] Dreyer, Maximisation of the Entropy in Non-Equilibrium, J. Phys. Math. Gen 20 pp 6505– (1987) · Zbl 0633.76081 · doi:10.1088/0305-4470/20/18/047
[36] Trovato, Maximum entropy principle and hydrodynamic models in statistical mechanics, Rivista del Nuovo Cimento 35 pp 99– (2012)
[37] Trovato, Quantum Maximum Entropy Principle for Fractional Exclusion Statistics, Phys. Rev. Lett 110 pp 020404:1– (2013) · doi:10.1103/PhysRevLett.110.020404
[38] Mascali, A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle, Math. Comput. Model 55 pp 1003– (2012) · Zbl 1255.82064 · doi:10.1016/j.mcm.2011.09.026
[39] Camiola, Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle, Continuum Mech. Thermodyn 24 pp 417– (2012) · Zbl 1263.82061 · doi:10.1007/s00161-011-0217-6
[40] Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (2005)
[41] Kremer, An Introduction to the Boltzmann Equation and Transport Processes in Gases (2010) · Zbl 1317.82002
[42] Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math 2 pp 331– (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[43] Gorban, Hilbert’s 6th Problem: Exact and approximate hydrodynamic manifolds for kinetic equations, Bull. Am. Math. Soc 5 pp 186– (2014)
[44] Onsager, Reciprocal relations of irreversible processes I, Phys. Rev 37 pp 405– (1931) · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[45] Onsager, Reciprocal relations of irreversible processes II, Phys. Rev 38 pp 2265– (1931) · Zbl 0004.18303 · doi:10.1103/PhysRev.38.2265
[46] Onsager, Fluctuations and irreversible processes, Phys. Rev 91 pp 1505– (1953) · Zbl 0053.15106 · doi:10.1103/PhysRev.91.1505
[47] Machlup, Fluctuations and irreversible processes II: Systems with kinetic energy, Phys. Rev 91 pp 1512– (1953) · Zbl 0053.15107 · doi:10.1103/PhysRev.91.1512
[48] Eckart, The thermodynamics of irreversible processes, I: The simple fluid, Phys. Rev 58 pp 267– (1940) · JFM 66.1076.03 · doi:10.1103/PhysRev.58.267
[49] Eckart, The thermodynamics of irreversible processes, II: Fluid mixtures, Phys. Rev 58 pp 269– (1940) · JFM 66.1077.01 · doi:10.1103/PhysRev.58.269
[50] Eckart, The thermodynamics of irreversible processes, III: Relativistic theory of the simple fluid, Phys. Rev 58 pp 919– (1940) · JFM 66.1077.02 · doi:10.1103/PhysRev.58.919
[51] Eckart, The thermodynamics of irreversible processes, IV: The theory of elasticity and anelasticity, Phys. Rev 73 pp 373– (1940) · Zbl 0032.22201 · doi:10.1103/PhysRev.73.373
[52] Prigogine, Etude thermodinamique des phénomènes irréversibles (1947)
[53] Billings, Tensor Properties of Materials (1969)
[54] Curie, Sur la symétrie dans les phènoménes physiques, symétrie d’un champ électrique et d’un champ magnetique, J. Phys. Theor. Appl 3 pp 393– (1894) · JFM 25.1773.06 · doi:10.1051/jphystap:018940030039300
[55] Kjelstrup, Non-equilibrium Thermodynamics of Heterogeneous Systems (2008) · Zbl 1142.82002
[56] Noll, Space-time Structures in Classical Mechanics, The Foundations of Mechanics and Thermodynamics (Selected papers by Walter Noll) pp 204– (1974)
[57] Liu, On Euclidean objectivity and the principle of material frame-indifference, Continuum Mech. Thermodyn 16 pp 177– (2003) · Zbl 1107.74300 · doi:10.1007/s00161-003-0149-x
[58] Fülöp, Kinematic quantities of finite elastic and plastic deformations, Math. Meth. Appl. Sci 35 pp 1825– (2012) · Zbl 1397.74008 · doi:10.1002/mma.2558
[59] Muschik, Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example, Arch. Appl. Mech 78 pp 837– (2008) · Zbl 1161.74315 · doi:10.1007/s00419-007-0193-2
[60] Müller, On the frame dependence of stress and heat flux, Arch. Ration. Mech. Anal 45 pp 241– (1972) · Zbl 0243.76051 · doi:10.1007/BF00251375
[61] Heckl, Frame dependence, entropy, entropy flux, and wave speed in mixtures of gases, Acta Mech 50 pp 71– (1983) · Zbl 0555.76056 · doi:10.1007/BF01170442
[62] Barbera, Inherent Frame Dependence of Thermodynamic Fields in a Gas, Acta Mech 184 pp 205– (2006) · Zbl 1096.76049 · doi:10.1007/s00707-006-0325-8
[63] Matolcsi, Can material time derivative be objective?, Phys. Lett. A 353 pp 109– (2006) · doi:10.1016/j.physleta.2005.12.072
[64] Matolcsi, Absolute time derivatives, J. Math. Phys 48 pp 053507:1– (2007) · Zbl 1144.81388 · doi:10.1063/1.2719144
[65] Maugin, The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction (1999) · Zbl 0945.80001
[66] Houlsby, Principles of Hyperplasticity (2006)
[67] Müller, Thermodynamics of irreversible processes–Past and present, Eur. Phys. J. H 37 pp 139– (2012) · doi:10.1140/epjh/e2012-20029-1
[68] Ruggeri, Can constitutive equations be represented by non-local equations?, Quart. Appl. Math 70 pp 597– (2012) · Zbl 1421.74011 · doi:10.1090/S0033-569X-2012-01314-3
[69] Hohenberg, Theory of dynamic critical phenomena, Rev. Modern Phys 49 pp 435– (1977) · doi:10.1103/RevModPhys.49.435
[70] Penrose, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 pp 44– (1990) · Zbl 0709.76001 · doi:10.1016/0167-2789(90)90015-H
[71] Liu, Entropy flux relation for viscoelastic bodies, J. Elast 90 pp 259– (2007) · Zbl 1134.74007 · doi:10.1007/s10659-007-9142-0
[72] Gyarmati, On the Wave Approach of Thermodynamics and some Problems of Non-Linear Theories, J. Non-Equilib. Thermodyn 2 pp 233– (1977) · Zbl 0366.73002 · doi:10.1515/jnet.1977.2.4.233
[73] Berezovski, Generalized thermomechanics with dual internal variables, Arch. Appl. Mech 81 pp 229– (2011) · Zbl 1271.74014 · doi:10.1007/s00419-010-0412-0
[74] DOI: 10.1007/s00161-013-0311-z. · Zbl 1341.80002 · doi:10.1007/s00161-013-0311-z
[75] Muschik, Aspects of Non-equilibrium Thermodynamics (1990)
[76] Luzzi, Statistical Foundations of Irreversible Thermodynamics (2001)
[77] Eu, Kinetic Theory and Irreversible Thermodynamics (1992) · Zbl 0561.76011
[78] Lebon, Questions and answers about a thermodynamic theory of third type, Contemp. Phys 33 pp 41– (1992) · doi:10.1080/00107519208219139
[79] Jou, Mesoscopic transport equations and contemporary thermodynamics, Contemp. Phys 52 pp 465– (2011) · doi:10.1080/00107514.2011.595596
[80] Tzou, Macro-to Microscale Heat Transfer. The Lagging Behaviour (1997)
[81] Guyer, Solution of the linearized phonon Boltzmann equation, Phys. Rev 148 pp 766– (1966) · doi:10.1103/PhysRev.148.766
[82] Guyer, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals, Phys. Rev 148 pp 778– (1966) · doi:10.1103/PhysRev.148.778
[83] Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena 3 pp 83– (1948)
[84] Sellitto, Entropy flux and anomalous axial heat transport at the nanoscale, Phys. Rev. B 87 pp 054302:1– (2013) · doi:10.1103/PhysRevB.87.054302
[85] Sellitto, Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires, Int. J. Heat Mass Transf 57 pp 109– (2013) · doi:10.1016/j.ijheatmasstransfer.2012.10.010
[86] Alvarez, Mesoscopic description of boundary effects in nanoscale heat transport, Nanoscale Syst. MMTA 1 pp 112– (2012)
[87] Landau, Fluid Mechanics (1958)
[88] Müller, Zum Paradoxon der Warmeleitungstheorie, Zeitschrift f\"r Physik 198 pp 329– (1967) · doi:10.1007/BF01326412
[89] Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid, Acta Mech 47 pp 167– (1983) · Zbl 0543.76050 · doi:10.1007/BF01189206
[90] Liu, Extended thermodynamics of classical and degenerate ideal gases, Arch. Ration. Mech. Anal 83 pp 285– (1983) · Zbl 0554.76014 · doi:10.1007/BF00963838
[91] Liu, Relativistic thermodynamics of Gases, Ann. Phys 169 pp 191– (1986) · doi:10.1016/0003-4916(86)90164-8
[92] Ruggeri, Galilean invariance and entropy principle for systems of balance laws, Continuum Mech. Thermodyn 1 pp 3– (1989) · Zbl 0759.35039 · doi:10.1007/BF01125883
[93] Ikenberry, On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory, J. Ration. Mech. Anal 5 pp 1– (1956) · Zbl 0070.23504
[94] Kapur, Maximum Entropy Models in Science and Engineering (1989)
[95] Kogan, On the Principle of Maximum Entropy, Rarefied Gas Dynamics I (1967)
[96] Levermore, Moment Closure Hierarchies for Kinetic Theories, J. Stat. Phys 83 pp 1021– (1996) · Zbl 1081.82619 · doi:10.1007/BF02179552
[97] Boillat, Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions, Arch. Ration. Mech. Anal 137 pp 305– (1997) · Zbl 0878.35070 · doi:10.1007/s002050050030
[98] Boillat, Maximum Wave Velocity in the Moments System of a Relativistic Gas, Continuum Mech. Thermodyn 11 pp 107– (1999) · Zbl 0935.76077 · doi:10.1007/s001610050106
[99] Boillat, Relativistic Gas: Moment Equations and Maximum Wave Velocity, J. Math. Phys 40 pp 6399– (1999) · Zbl 0962.82060 · doi:10.1063/1.533099
[100] Arima, Extended thermodynamics of dense gases, Continuum Mech. Thermodyn 24 pp 271– (2011) · Zbl 1318.80001 · doi:10.1007/s00161-011-0213-x
[101] Arima, Monatomic Rarefied Gas as a Singular Limit of Polyatomic Gas in Extended Thermodynamics, Phys. Lett. A 377 pp 2136– (2013) · Zbl 1297.76143 · doi:10.1016/j.physleta.2013.06.035
[102] Arima, Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner’s theory, Phys. Lett. A 376 pp 2799– (2012) · Zbl 1396.80001 · doi:10.1016/j.physleta.2012.08.030
[103] Meixner, Absorption und Dispersion des Schalles in Gasen mit chemisch reagierenden und anregbaren Komponenten. I. Teil, Ann. Physik 43 pp 470– (1943) · doi:10.1002/andp.19434350608
[104] Meixner, Allgemeine theorie der Schallabsorption in Gasen und Flüssigkeiten unter Berücksichtigung der Transporterscheinungen, Acoustica 2 pp 101– (1952)
[105] Arima, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics, Continuum Mech. Thermodyn 25 pp 727– (2013) · Zbl 1341.80004 · doi:10.1007/s00161-012-0271-8
[106] Taniguchi, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E 89 pp 013025:1– (2014) · doi:10.1103/PhysRevE.89.013025
[107] Taniguchi, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas, Phys. Fluids 26 pp 016103:1– (2014) · doi:10.1063/1.4861368
[108] Borgnakke, Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture, J. Comput. Phys 18 pp 405– (1975) · doi:10.1016/0021-9991(75)90094-7
[109] Bourgat, Microreversible collisions for polyatomic gases, Eur. J. Mech. B Fluid 13 pp 237– (1994) · Zbl 0807.76067
[110] Shizuta, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J 14 pp 249– (1985) · Zbl 0587.35046 · doi:10.14492/hokmj/1381757663
[111] Hanouzet, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Rational Mech. Anal 169 pp 89– (2003) · Zbl 1037.35041 · doi:10.1007/s00205-003-0257-6
[112] Yong, Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech. Anal 172 pp 247– (2004) · Zbl 1058.35162 · doi:10.1007/s00205-003-0304-3
[113] Bianchini, Asymptotic Behavior of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy, Comm. Pure Appl. Math 60 pp 1559– (2007) · Zbl 1152.35009 · doi:10.1002/cpa.20195
[114] Dafermos, Hyperbolic Conservation Laws in Continuum Physics (2001) · Zbl 1364.35003
[115] Ruggeri, Stability of constant equilibrium state for dissipative balance laws system with a convex entropy, Quart. Appl. Math 62 pp 163– (2004) · Zbl 1068.35067 · doi:10.1090/qam/2032577
[116] Lou, Acceleration Waves and Weak Shizuta-Kawashima Condition, Suppl. Rend. Circ. Mat. Palermo 78 pp 187– (2006) · Zbl 1122.35072
[117] Ruggeri, Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics, Trends and Applications of Mathematics to Mechanics (2005)
[118] Ruggeri, Entropy principle and Relativistic Extended Thermodynamics: Global existence of smooth solutions and stability of equilibrium state, Il Nuovo Cimento B 119 pp 809– (2004)
[119] Ruggeri, Extended Relativistic Thermodynamics, General Relativity and the Einstein Equations pp 334– (2009) · Zbl 0609.76129
[120] Ruggeri, On the Hyperbolic System of a Mixture of Eulerian Fluids: A Comparison Between Single and Multi-Temperature Models, Math. Meth. Appl. Sci 30 pp 827– (2007) · Zbl 1136.76428 · doi:10.1002/mma.813
[121] Gurtin, On the Classical Theory of Reacting Fluid Mixtures, Arch. Ration. Mech. Anal 43 pp 179– (1971) · Zbl 0227.76011
[122] Triani, Exploitation of the Second Law: Coleman-Noll and Liu Procedure in Comparison, J. Non-Equilib. Thermodyn 33 pp 47– (2008) · Zbl 1186.80004 · doi:10.1515/JNETDY.2008.003
[123] Maugin, Thermodynamics with Internal Variables. Part I. General Concepts, J. Non-Equilib. Thermodyn 19 pp 217– (1994) · Zbl 0808.73006
[124] Maugin, Thermodynamics with Internal Variables. Part II. Applications, J. Non-Equilib. Thermodyn 19 pp 250– (1994)
[125] Smith, On isotropic functions of symmetric tensors, skew–symmetric tensors and vectors, Int. J. Eng. Sci 9 pp 899– (1971) · Zbl 0233.15021 · doi:10.1016/0020-7225(71)90023-1
[126] Verhás, Thermodynamics and Rheology (1997)
[127] Boillat, La propagation des Ondes (1965)
[128] Boillat, On the evolution law of the weak discontinuities for hyperbolic quasi-linear systems, Wave Motion 1 pp 149– (1979) · Zbl 0418.35065 · doi:10.1016/0165-2125(79)90017-9
[129] Ruggeri, Stability and Discontinuity Waves for Symmetric Hyperbolic Systems, Non-linear Wave Motion pp 148– (1989)
[130] Fisher, The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system, Comm. Math. Phys 28 pp 1– (1972) · Zbl 0247.35082 · doi:10.1007/BF02099369
[131] Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques, C. R. Acad. Sci. Paris A 278 pp 909– (1974) · Zbl 0279.35058
[132] Ruggeri, Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. H. Poincaré, Section A 34 pp 65– (1981) · Zbl 0473.76126
[133] Friedrichs, Systems of conservation equations with a convex extension, Proc. Natl. Acad. Sci. USA 68 pp 1686– (1971) · Zbl 0229.35061 · doi:10.1073/pnas.68.8.1686
[134] Korteweg, Sur la forme qui prennent les equations du mouvement des fluids si l’on tient compte des forces capillaires par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Arch. Néer. Sci. Exactes 6 pp 1– (1901) · JFM 32.0756.02
[135] Triani, Entropy principle, non-regular processes, and generalized exploitation procedures, J. Math. Phys 53 pp 063509– (2012) · Zbl 1288.74004 · doi:10.1063/1.4729375
[136] Triani, Interpretation of Second Law of Thermodynamics in the presence of interfaces, Continuum Mech. Thermodyn 24 pp 165– (2012) · Zbl 1342.80004 · doi:10.1007/s00161-011-0231-8
[137] Cimmelli, Different thermodynamic theories and different heat conduction laws, J. Non-Equilib. Thermodyn 34 pp 299– (2009) · Zbl 1195.80001 · doi:10.1515/JNETDY.2009.016
[138] Cimmelli, On the causality requirement for diffusive-hyperbolic systems in non-equilibrium thermodynamics, J. Non-Equilib. Thermodyn 29 pp 125– (2004) · Zbl 1111.82305 · doi:10.1515/JNETDY.2004.008
[139] Fichera, Is the Fourier theory of heat propagation paradoxical?, Rendiconti del Circolo Matematico di Palermo 41 pp 5– (1992) · Zbl 0756.35035 · doi:10.1007/BF02844459
[140] Maxwell, Theory of Heat (1872)
[141] Day, Two Lines of Defense of Fourier’s Theory of Heat Propagation, Homage to Gaetano Fichera pp 147– (2000)
[142] Day, A note on the propagation of temperature disturbances, Quart. Appl. Math 55 pp 565– (1997) · Zbl 0979.35505 · doi:10.1090/qam/1466149
[143] Day, On the propagation of the bulk of a mass subject to periodic convection and diffusion, Quart. Appl. Math 57 pp 561– (1999) · Zbl 1028.35056 · doi:10.1090/qam/1704423
[144] Day, On rates of propagation for Burgers’ equation, Rendiconti Lincei. Matematica e Applicazioni 9 pp 149– (1998)
[145] Gurtin, A general theory of heat conduction with finite wave speed, Arch. Ration. Mech. Anal 31 pp 113– (1968) · Zbl 0164.12901 · doi:10.1007/BF00281373
[146] Fichera, Avere una memoria tenace crea gravi problemi, Arch. Ration. Mech. Anal 70 pp 101– (1979) · Zbl 0425.73002 · doi:10.1007/BF00250347
[147] Coleman, The thermodynamics of second sound in crystals, Arch. Ration. Mech. Anal 80 pp 135– (1982) · Zbl 0501.73008 · doi:10.1007/BF00250739
[148] Morro, Second sound and internal energy in solids, Int. J. Non-Linear Mech 22 pp 27– (1987) · Zbl 0605.73005 · doi:10.1016/0020-7462(87)90046-1
[149] Cimmelli, Nonequilibrium semi-empirical temperature in materials with thermal relaxation, Arch. Mech 43 pp 753– (1991) · Zbl 0757.73002
[150] Ván, Universality in heat conduction theory: Weakly nonlocal thermodynamics, Ann. Physik 524 pp 470– (2012) · Zbl 1263.80010 · doi:10.1002/andp.201200042
[151] Waldman, Non-equilibrium thermodynamics of boundary conditions, Z. Naturforschg 22 pp 1269– (1967)
[152] Cimmelli, Boundary conditions in the presence of internal variables, J. Non-Equilib. Thermodyn 27 pp 15– (2002) · Zbl 1161.80301 · doi:10.1515/JNETDY.2002.019
[153] Barbera, Determination of boundary conditions in extended thermodynamics via fluctuation theory, Continuum. Mech. Thermodyn 16 pp 411– (2004) · Zbl 1100.82020 · doi:10.1007/s00161-003-0165-x
[154] Müller, Extended thermodynamics consistent in order of magnitude, Continuum. Mech. Thermodyn 15 pp 113– (2003) · Zbl 1057.80002 · doi:10.1007/s00161-002-0106-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.