×

Strings of minimal 6d SCFTs. (English) Zbl 1338.81324

Summary: We study strings associated with minimal 6d SCFTs, which by definition have only one string charge and no Higgs branch. These theories are labelled by a number \(n\) with \(1 \leq n \leq 8\) or \(n = 12\). Quiver theories have previously been proposed which describe strings of SCFTs for \(n = 1, 2\). For \(n > 2\) the strings interact with the bulk gauge symmetry. In this paper we find a quiver description for the \(n = 4\) string using Sen’s limit of F-theory and calculate its elliptic genus with localization techniques. This result is checked using the duality of F-theory with M-theory and topological string theory whose refined BPS partition function captures the elliptic genus of the SCFT strings. We use the topological string theory to gain insight into the elliptic genus for other values of \(n\).

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
81T13 Yang-Mills and other gauge theories in quantum field theory
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
58J26 Elliptic genera

References:

[1] J. J.Heckman, D. R.Morrison and C.Vafa, “On the Classification of 6D SCFTs and Generalized ADE Orbifolds,” JHEP1405, 028 (2014) [arXiv:1312.5746 [hep‐th]].
[2] D.Gaiotto and A.Tomasiello, “Holography for (1,0) theories in six dimensions,” arXiv:1404.0711 [hep‐th].
[3] M. DelZotto, J. J.Heckman, A.Tomasiello and C.Vafa, “6d Conformal Matter,” arXiv:1407.6359 [hep‐th].
[4] B.Haghighat, A.Iqbal, C.Kozcaz, G.Lockhart and C.Vafa, “M‐Strings,” arXiv:1305.6322 [hep‐th].
[5] B.Haghighat, C.Kozcaz, G.Lockhart and C.Vafa, “On orbifolds of M‐Strings,” Physical Review D894 (2014): 046003 [arXiv:1310.1185 [hep‐th]].
[6] J.Kim, S.Kim, K.Lee, J.Park and C.Vafa, “Elliptic Genus of E‐strings,” arXiv:1411.2324 [hep‐th].
[7] D. R.Morrison and W.Taylor, “Classifying bases for 6D F‐theory models,” Central Eur. J. Phys.10, 1072 (2012) [arXiv:1201.1943 [hep‐th]].
[8] E.Witten, “Phase transitions in M theory and F theory,” Nucl. Phys. B471, 195 (1996) [hep‐th/9603150]. · Zbl 1003.81537
[9] E.Witten, “Small instantons in string theory,” Nucl. Phys. B460, 541 (1996) [hep‐th/9511030]. · Zbl 0935.81052
[10] O. J.Ganor and A.Hanany, “Small E(8) instantons and tensionless noncritical strings,” Nucl. Phys. B474, 122 (1996) [hep‐th/9602120]. · Zbl 0925.81170
[11] N.Seiberg and E.Witten, “Comments on string dynamics in six‐dimensions,” Nucl. Phys. B471, 121 (1996) [hep‐th/9603003]. · Zbl 1003.81535
[12] A.Klemm, P.Mayr and C.Vafa, “BPS states of exceptional noncritical strings,” Nucl. Phys. Proc. Suppl.58, 177 (1997) [hep‐th/9607139]. · Zbl 0976.81503
[13] A.Sen, “Orientifold limit of F theory vacua,” Phys. Rev. D55, 7345 (1997) [hep‐th/9702165].
[14] M. X.Huang, A.Klemm and M.Poretschkin, “Refined stable pair invariants for E‐, M‐ and \([ p , q ]\)‐strings,” JHEP1311, 112 (2013) [arXiv:1308.0619 [hep‐th]].
[15] C.Vafa, “Evidence for F theory,” Nucl. Phys. B469, 403 (1996) [hep‐th/9602022]. · Zbl 1003.81531
[16] D. R.Morrison and C.Vafa, “Compactifications of F theory on Calabi‐Yau threefolds. 1,” Nucl. Phys. B473, 74 (1996) [hep‐th/9602114]. · Zbl 0925.14005
[17] D. R.Morrison and C.Vafa, “Compactifications of F theory on Calabi‐Yau threefolds. 2.,” Nucl. Phys. B476, 437 (1996) [hep‐th/9603161]. · Zbl 0925.14007
[18] A.Gadde and S.Gukov, “2d Index and Surface operators,” JHEP1403, 080 (2014) · Zbl 1333.81399
[19] F.Benini, R.Eager, K.Hori and Y.Tachikawa, “Elliptic genera of 2d N=2 gauge theories,” arXiv:1308.4896 [hep‐th].
[20] F.Benini, R.Eager, K.Hori and Y.Tachikawa, “Elliptic genera of two‐dimensional N=2 gauge theories with rank‐one gauge groups,” Lett. Math. Phys.104, 465 (2014) [arXiv:1305.0533 [hep‐th]]. · Zbl 1312.58008
[21] P.Candelas, A.Font, S. H.Katz and D. R.Morrison, “Mirror symmetry for two parameter models. 2.,” Nucl. Phys. B429, 626 (1994) [hep‐th/9403187]. · Zbl 0899.14018
[22] A. M.Uranga, “A New orientifold of C**2/Z(N) and six‐dimensional RG fixed points,” Nucl. Phys. B577, 73 (2000) [hep‐th/9910155]. · Zbl 1056.81559
[23] M. R.Douglas and G. W.Moore, “D‐branes, quivers, and ALE instantons,” hep‐th/9603167.
[24] E. G.Gimon and J.Polchinski, “Consistency conditions for orientifolds and d manifolds,” Phys. Rev. D54, 1667 (1996) [hep‐th/9601038].
[25] L. C.Jeffrey and F. C.Kirwan, “Localization for nonabelian group actions,” Topology34(2), 291-327 (1995). arXiv:alg‐geom/9307001 · Zbl 0833.55009
[26] A.Gadde, S.Gukov and P.Putrov, “Exact Solutions of 2d Supersymmetric Gauge Theories,” arXiv:1404.5314 [hep‐th].
[27] S.Hosono, M. H.Saito and A.Takahashi, “Holomorphic anomaly equation and BPS state counting of rational elliptic surface,” Adv. Theor. Math. Phys.3, 177 (1999) [hep‐th/9901151]. · Zbl 1062.14504
[28] R.Gopakumar and C.Vafa, “M theory and topological strings. 2.,” hep‐th/9812127.
[29] T. J.Hollowood, A.Iqbal and C.Vafa, “Matrix models, geometric engineering and elliptic genera,” JHEP0803, 069 (2008) [hep‐th/0310272].
[30] M. x.Huang and A.Klemm, “Direct integration for general Ω backgrounds,” Adv. Theor. Math. Phys.16(3) 805 (2012) [arXiv:1009.1126 [hep‐th]]. · Zbl 1276.81098
[31] A.Klemm, B.Lian, S. S.Roan and S. T.Yau, “Calabi‐Yau fourfolds for M theory and F theory compactifications,” Nucl. Phys. B518, 515 (1998) [hep‐th/9701023]. · Zbl 0920.14016
[32] M. B.Green, J. H.Schwarz and P. C.West, “Anomaly Free Chiral Theories in Six‐Dimensions,” Nucl. Phys. B254, 327 (1985).
[33] J.Erler, “Anomaly cancellation in six‐dimensions,” J. Math. Phys.35, 1819 (1994) [hep‐th/9304104]. · Zbl 0803.58060
[34] S.Kachru, A.Klemm and Y.Oz, “Calabi‐Yau duals for CHL strings,” Nucl. Phys. B521, 58 (1998) [hep‐th/9712035]. · Zbl 1047.81548
[35] N. C.Bizet, A.Klemm and D. V.Lopes, “Landscaping with fluxes and the E8 Yukawa Point in F‐theory,” arXiv:1404.7645 [hep‐th].
[36] J.Tate, “Algorithm for Determining the Type of a Singular Fibre in an Elliptic Pencil”, in Modular Functions of one variable IV, Lecture Notes in mathematics 476, Springer‐Verlag, Berlin (1975).
[37] C. T. C.Wall, “Classification problems in differential topology. V. On certain 6‐manifolds”, Invent. Math.1355-374 (1966), corrigendum, ibid. · Zbl 0149.20601
[38] V. V.Batyrev, “Dual polyhedra and mirror symmetry for Calabi‐Yau hypersurfaces in toric varieties,” J. Alg. Geom.3, 493 (1994) [alg‐geom/9310003]. · Zbl 0829.14023
[39] S.Hosono, A.Klemm, S.Theisen and S. T.Yau, “Mirror symmetry, mirror map and applications to Calabi‐Yau hypersurfaces,” Commun. Math. Phys.167, 301 (1995) [hep‐th/9308122]. · Zbl 0814.53056
[40] E.Witten, “Phases of N=2 theories in two‐dimensions,” Nucl. Phys. B403, 159 (1993) [hep‐th/9301042]. · Zbl 0910.14020
[41] K.Oguiso, “On algebraic fiber space structures on a Calabi‐Yau 3‐fold,” Internat. J. Math.3, 439-465 (1993). · Zbl 0793.14030
[42] R.Friedman, J.Morgan and E.Witten, “Vector bundles and F theory,” Commun. Math. Phys.187, 679 (1997) [hep‐th/9701162]. · Zbl 0919.14010
[43] W.Lerche, D.Lust and N. P.Warner, “Duality Symmetries in \(N = 2\) Landau‐Ginzburg Models,” Phys. Lett. B231, 417 (1989).
[44] P.Candelas, E.Derrick and L.Parkes, “Generalized Calabi‐Yau manifolds and the mirror of a rigid manifold,” Nucl. Phys. B407, 115 (1993) [hep‐th/9304045]. · Zbl 0899.32011
[45] D.Lust, S.Reffert, E.Scheidegger and S.Stieberger, “Resolved Toroidal Orbifolds and their Orientifolds,” Adv. Theor. Math. Phys.12, 67 (2008) [hep‐th/0609014]. · Zbl 1152.81883
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.