×

HIV evolution and progression of the infection to AIDS. (English) Zbl 1337.92128

Summary: In this paper, we propose and discuss a possible mechanism, which, via continuous mutations and evolution, eventually enables HIV to break from immune control. In order to investigate this mechanism, we employ a simple mathematical model, which describes the relationship between evolving HIV and the specific CTL response and explicitly takes into consideration the role of \(\mathrm{CD}4^+\mathrm T\) cells (helper T cells) in the activation of the CTL response. Based on the assumption that HIV evolves towards higher replication rates, we quantitatively analyze the dynamical properties of this model. The model exhibits the existence of two thresholds, defined as the immune activation threshold and the immunodeficiency threshold, which are critical for the activation and persistence of the specific cell-mediated immune response: the specific CTL response can be established and is able to effectively control an infection when the virus replication rate is between these two thresholds. If the replication rate is below the immune activation threshold, then the specific immune response cannot be reliably established due to the shortage of antigen-presenting cells. Besides, the specific immune response cannot be established when the virus replication rate is above the immunodeficiency threshold due to low levels of \(\mathrm{CD}4^+\mathrm T\) cells. The latter case implies the collapse of the immune system and beginning of AIDS. The interval between these two thresholds roughly corresponds to the asymptomatic stage of HIV infection. The model shows that the duration of the asymptomatic stage and progression of the disease are very sensitive to variations in the model parameters. In particularly, the rate of production of the naive lymphocytes appears to be crucial.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology

References:

[1] Alimonti, J. B.; Ball, T. B.; Fowke, K. R., Mechanisms of CD \(4^+\) T lymphocyte cell death in human immunodeficiency virus infection and AIDS, J. Gen. Virol., 84, 7, 1649-1661 (2003)
[2] Allen, T. M., Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia, Nature, 407, 386-390 (2000)
[3] Altes, H. K.; Wodarz, D.; Jansen, V. A.A., The dual role of CD4 T helper cells in the infection dynamics of HIV and their importance for vaccination, J. Theor. Biol., 214, 633-646 (2002)
[4] Asjo, B.; Albert, J.; Karlsson, A.; Morfeldtmanson, L.; Biberfeld, G.; Lidman, K.; Fenyo, E. M., Replication capacity of human immunodeficiency virus (HIV) from patients with varying severity of HIV infection, Lancet, 2, 8508, 660-662 (1986)
[5] Barouch, D. H., Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes, Nature, 415, 335-339 (2002)
[6] Bittner, B.; Bonhoeffer, S.; Howak, M. A., Virus load and antigenic diversity, Soc. Math. Biol., 59, 881-896 (1997) · Zbl 0883.92017
[7] Cohen, O. J.; Fauci, A. S., Transmission of multidrug-resistant human immunodeficiency virus E—the wake-up call, N. Engl. J. Med., 339, 341-343 (1998)
[8] de Boer, R. J.; Boerlijst, M. C., Diversity and virulence thresholds in AIDS, Proc. Natl. Acad. Sci. USA, 94, 544-548 (1994) · Zbl 0786.92020
[9] de Baer, R. J.; Perelson, A. S., Target cell limited and immune control models of HIV infection: a comparison, J. Theor. Biol., 190, 201-214 (1998)
[10] Dempsey, C., Korobeinikov, A. HIV evolution within a host. R. Soc. Interface, submitted for publication.; Dempsey, C., Korobeinikov, A. HIV evolution within a host. R. Soc. Interface, submitted for publication. · Zbl 1327.92035
[11] Funk, G. A.; Jansen, V. A.A.; Bonhoeffer, S.; Killingback, T., Spatial models of virus-immune dynamics, J. Theor. Biol., 233, 221-236 (2005) · Zbl 1442.92163
[12] Galvani, A. P., The role of mutation accumulation in HIV progression, Proc. R. Soc. Lond. B, 272, 1851-1858 (2005)
[13] Gamberg, J.; Grant, M., Cytotoxic T lymphocytes in human immunodeficiency virus type-1 infection, Clin. Appl. Immunol. Rev., 1, 17-36 (2000)
[14] Gorban, A. N., Selection Theorem for Systems With Inheritance, Math. Model. Nat. Phenom., 2, 1-45 (2007) · Zbl 1337.92150
[15] Holmes, E. C.; Zhang, L. Q.; Simmonds, P.; Ludlam, C. A.; Brown, A. J., Convergent and divergent sequence evolution in the surface envelope glycoprotein of HIV-1 within a single infected patients, Proc. Natl. Acad. Sci. USA, 89, 4835-4839 (1992)
[16] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126 (1995)
[17] Iwami, S.; Miura, T.; Nakaoka, S.; Takeuchi, Y., Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds, J. Theor. Biol., 260, 490-501 (2009) · Zbl 1402.92391
[18] Iwami, S.; Nakaoka, S.; Takeuchi, Y.; Miura, Y.; Miura, T., Immune impairment thresholds in HIV infection, Immunol. Lett., 123, 149-154 (2009)
[19] Iwasa, Y.; Michor, F.; Nowak, M. A., Some basic properties of immune selection, J. Theor. Biol., 229, 179-188 (2004) · Zbl 1440.92027
[20] Iwasa, Y.; Michor, F.; Nowak, M. A., Virus evolution within patients increases pathogenicity, J. Theor. Biol., 232, 17-26 (2005) · Zbl 1442.92033
[21] Janewa, C., Travers, P., Walport, M., Shlomchik, M.J., 2004. Immunobiology: The Immune System in Health and Disease. Garland Pub.; Janewa, C., Travers, P., Walport, M., Shlomchik, M.J., 2004. Immunobiology: The Immune System in Health and Disease. Garland Pub.
[22] Jost, S., A patient with HIV-1 superinfection, N. Engl. J. Med., 347, 731-736 (2002)
[23] Jung, A., Recombination: multiply infected spleen cells in HIV patients, Nature, 418, 144 (2002)
[24] Koelsch, K. K., Clade B HIV-1 superinfection with wildtype virus after primary infection with drug-resistant clade B virus, AIDS, 17, F11-F16 (2003)
[25] Krakauer, D. C.; Nowak, M., T-cell induced pathogenesis in HIV: bystander effects and latent infection, Proc. R. Soc. Lond. B, 266, 1069-1075 (1999)
[26] Levin, B. R.; Bull, J. J.; Stewart, F. M., Epidemiology, evolution, and future of the HIV/AIDS pandemic, Emerg. Infect. Dis., 7, 505-511 (2001)
[27] Li, M. Y.; Shu, H., Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-1 infection, Bull. Math. Biol., 73, 1774-1793 (2011), doi:10.1007/s11538-010-9591-7 · Zbl 1220.92040
[28] Maloy, K. J.; Burkhart, C.; Junt, T. M.; Odermatt, B.; Oxenius, A.; Piali, L.; Zinkernagel, R. M.; Hengartner, H., CD \(4^+\) T cell subsets during virus infection. Protective capacity depends on effector cytokine secretion and on migratory capability, J. Exp. Med., 191, 2159-2170 (2000)
[29] Markham, R. B., Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline, Proc. Natl. Acad. Sci. USA, 95, 12568-12573 (1998)
[30] McMichael, A. J.; Phillips, R. E., Escape of human immunodeficiency virus from immune control, Ann. Rev. Immunol., 15, 271-296 (1997)
[31] Mohri, H., Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy, J. Exp. Med., 194, 1277-1287 (2001), http://www.jem.org/cgi/content/full/194/9/1277
[32] Moskophidis, D.; Battegay, M.; van den Broek, M.; Laine, E.; Hoffmann-Rohrer, U.; Zinkernagel, R. M., Role of virus and host variables in virus persistence or immunopathological disease caused by non-cytolytic virus, J. Gen. Virol., 76, 381-391 (1995)
[33] Neher, R. A.; Leitner, T., Recombination rate and selection strength in HIV intrapatient evolution, PLoS Computat. Biol., 6, e1000660 (2001)
[34] Nelson, G. W.; Perelson, A. S., A mechanism of immune escape by slow replicating HIV strains, AIDS, 5, 82-93 (1992)
[35] Norrisa, P. J.; Rosenberg, E., CD \(4^+\) T helper cells and the role they play in viral control, J. Mol. Med., 80, 397-405 (2002)
[36] Nowak, M.A., 2006. HIV infection. In: Evolutionary Dynamics: Exploring the Equations of Life. The Belknap Press of Harvard University Press, pp. 168-188.; Nowak, M.A., 2006. HIV infection. In: Evolutionary Dynamics: Exploring the Equations of Life. The Belknap Press of Harvard University Press, pp. 168-188. · Zbl 1115.92047
[37] Nowak, M. A.; Anderson, R. M.; Mclean, A. R.; Wolfs, T. F.; Goudsmit, J.; May, R. M., Antigenic diversity thresholds and the development of AIDS, Science, 254, 963-969 (1991)
[38] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent virus, Science, 272, 74-79 (1996)
[39] Nowak, M. A.; May, R. M.; Sigmund, K., Immune responses against multiple epitopes, J. Theor. Biol., 175, 325-353 (1995)
[40] Nowak, M. A.; May, R. M., Virus Dynamics (2000), Oxford University Press · Zbl 1101.92028
[41] Pantaleo, G.; Graziosi, C.; Fauci, A. S., New concepts in the immunopathogenesis of human immunodeficiency virus infection, N. Engl. J. Med., 328, 327-335 (1993)
[42] Pantaleo, G.; Fauci, A. S., New concepts in the immunopathogenesis of HIV infection, Annu. Rev. Immunol., 13, 487-512 (1995), doi:10.1146/annurev.iy.13.040195.002415
[43] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996)
[44] Perelson, A. S.; Ribeiro, R. M., Estimating drug efficacy and viral dynamic parameters: HIV and HCV, Statist. Med., 27, 4647-4657 (2008)
[45] Piatak, M.; Saag, M. S.; Yang, L. C.; Clark, S. J.; Kappes, J. C.; Luk, K. C.; Hahn, B. H.; Shaw, G. M.; Lifson, J. D., High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR, Science, 259, 5102, 1749-1754 (1993), doi:10.1126/science.8096089.PMID8096089
[46] Preston, B. D.; Poiesz, B. J.; Loeb, L. A., Fidelity of HIV-1 reverse transcriptase, Science, 242, 1169-1171 (1988)
[47] Rambaut, A.; Posada, D.; Crandall, K. A.; Holmes, E. C., The causes and consequences of HIV evolution, Nat. Rev., 5, 52-61 (2004)
[48] Regoes, R. R.; Wodarz, D.; Nowak, M. A., Virus dynamics: the effect of target cell limitation and immune responses on virus evolution, J. Theor. Biol., 191, 451-462 (1998)
[49] Rinaldo, C. R.; Huang, X. L.; Fan, Z.; Ding, M.; Beltz, L.; Logar, A.; Panicali, D.; Mazzara, G.; Liebmann, J.; Cottrill, M.; Gupta, P., High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long term nonprogressors, J. Virol., 69, 5838-5842 (1995)
[50] Robertson, D. L.; Hahn, B. H.; Sharp, P. M., Recombination in AIDS viruses, J. Mol. Evol., 40, 249-259 (1995), doi:10.1007/BF00163230
[51] Ribeiro, R. M.; Mohri, H.; Ho, D. D.; Perelson, A. S., In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD \(4^+\) but not CD \(8^+\) T cells depleted?, Rroc. Natl. Acad. Sci. USA, 99, 15572-15577 (2002), doi:10.1073/pnas.242358099
[52] Stafford, M. A.; Corey, L.; Cao, Y.; Daar, E. S.; Ho, D. D.; Perlson, A. S., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203, 285-301 (2000)
[53] Shankarappa, R., Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection, J. Virol., 73, 10489-10502 (1999)
[54] Tersmette, M.; Gruters, R. A.; Dewolf, F.; DeGoede, R. E.Y.; Lange, J. M.A.; Schellekens, P. T.A., Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates, J. Viol., 63, 2218-2225 (1989)
[55] Tunetsugu-Yokota, Y., How does HIV infection destroy the host immune system, J. AIDS Res., 7, 171-179 (2005)
[56] Vargas-De-León, C., Korobeinikov, A., 2011. Global stability of a population dynamics model with inhibition and negative feedback. Mathematical Medicine and Biology. doi:10.1093/imammb/dqr027; Vargas-De-León, C., Korobeinikov, A., 2011. Global stability of a population dynamics model with inhibition and negative feedback. Mathematical Medicine and Biology. doi:10.1093/imammb/dqr027 · Zbl 1318.92044
[57] Walker, B. D.; Korber, B. T., Immune control of HIV: the obstacles of HLA and viral diversity, Nat. Immunol., 2, 473-475 (2001)
[58] Wodarz, D., Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses, J. Gen. Viol., 84, 1743-1750 (2003)
[59] Wodarz, D., Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology (2007), Springer Verlag: Springer Verlag New York · Zbl 1125.92032
[60] Wodarz, D.; Christensen, J. P.; Thomsen, A. R., The importance of lytic and nonlytic immune responses in viral infections, TRENDS Immunol., 23, 194-200 (2002)
[61] Wodarz, D.; Jansen, V. A.A., The role of T cell help for anti-viral CTL responses, J. Theor. Biol., 211, 419-432 (2001)
[62] Wodarz, D.; Klenerman, P.; Nowak, M. A., Dynamics of cytotoxic T-lymphocyte exhaustion, Proc. R. Soc. Lond. B, 265, 191-203 (1998)
[63] Wodarz, D.; Nowak, M. A., Specific therapy regimes could lead to long-term immunological control of HIV, Proc. Natl. Acad. Sci. USA, 96, 14464-14469 (1999)
[64] Wodarz, D., Cytotoxic T-cell abundance and virus load in human immunodeficiency virus type 1 and human T-cell leukaemia virus type 1, Proc. R. Soc. Lond. B, 268, 1215-1221 (2001)
[65] Wodarz, D.; Thomsen, A. R., Does programmed CTL proliferation optimize virus control, TRENDS Immunol., 26, 305-310 (2005)
[66] Wolinksy, S. M., Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection, Science, 272, 537-542 (1996)
[67] Yin, E. Z.; Frush, D. P.; Donnelly, L. F.; Buckley, R. H., Primary immunodeficiency disorders in pediatric patients: clinical features and imaging findings, AJR, 176, 1541-1551 (2001)
[68] Zhuang, J., Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots, J. Virol., 76, 11273-11282 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.