×

Some basic properties of immune selection. (English) Zbl 1440.92027

Summary: We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that – under strain-specific immunity – the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.

MSC:

92C32 Pathology, pathophysiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Bittner, B.; Bonhoeffer, S.; Nowak, M. A., Virus load and antigenic diversity, Bull. Math. Biol., 59, 881-896 (1997) · Zbl 0883.92017
[2] Bonhoeffer, S.; Nowak, M. A., Can live attenuated virus work as post-exposure treatment?, Immunol. Tod., 16, 131-135 (1994)
[3] Borrow, P.; Lewicki, H.; Wei, X.; Horwitz, M. S.; Peffer, N.; Meyers, H.; Nelson, J. A.; Gairin, J. E.; Hahn, B. H.; Oldstone, M. B.; Shaw, G. M., Antiviral pressure exerted by HIV-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus, Nat. Med., 3, 205-211 (1997)
[4] De Boer, R. J.; Boerlijst, M. C., Diversity and virulence thresholds in AIDS, Proc. Natl Acad. Sci. USA, 91, 544-548 (1994) · Zbl 0786.92020
[5] De Boer, R. J.; Perelson, A. S., Target cell limited and immune control models of HIV infection: a comparison, J. Theor. Biol., 190, 201-214 (1998)
[6] Fenyo, E. M., Antigenic variation of primate lentiviruses in humans and experimentally infected macaques, Immunol. Rev., 140, 131-146 (1994)
[7] Gupta, S.; Ferguson, N.; Anderson, R., Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents, Science, 280, 912-915 (1998)
[8] Hahn, B. H.; Shaw, G. M.; Taylor, M. E.; Redfield, R. R.; Markham, P. D.; Salahuddin, S. Z.; Wong-Staal, F.; Gallo, R. C.; Parks, E. S.; Parks, W. P., Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS, Science, 232, 1548-1553 (1986)
[9] Holmes, E. C.; Zhang, L. Q.; Simmonds, P.; Ludlam, C. A.; Leigh Brown, A. J., Convergent and divergent sequence evolution in the surface envelope glycoprotein of HIV-1 within a single infected patient, Proc. Natl Acad. Sci. USA, 89, 4835-4839 (1992)
[10] La Salle, J.; Lefschetz, S., Stability by Liapunov’s Method, with Applications (1961), Academic Press: Academic Press New York · Zbl 0098.06102
[11] Levin, B. R.; Bull, J. J., Short-sighted evolution and the virulence of pathogenic microorganisms, Trends Microbiol., 2, 76-81 (1994)
[12] Levin, S. A.; Grenfell, B.; Hastings, A.; Perelson, A. S., Mathematical and computational challenges in population biology and ecosystem science, Science, 275, 334-343 (1997) · Zbl 1225.92058
[13] Levin, B. R.; Lipsitch, M.; Bonhoeffer, S., Population biology, evolution, and infectious disease: convergence and synthesis, Science, 283, 806-809 (1999)
[14] McLean, A. R.; Nowak, M. A., Interactions between HIV and other pathogens, J. Theor. Biol., 155, 69-86 (1992)
[15] McMichael, A. J.; Phillips, R. E., Escape of human immunodeficiency virus from immune control, Ann. Rev. Immunol., 15, 271-296 (1997)
[16] Nowak, M. A.; Bangham, C. R.M, Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[17] Nowak, M. A.; May, R., Virus Dynamics (2000), Oxford University Press: Oxford University Press Oxford · Zbl 1101.92028
[18] Nowak, M. A.; Anderson, R. M.; McLean, A. R.; Wolfs, T. F.W; Goudsmit, J.; May, R. M., Antigenic diversity thresholds and the development of AIDS, Science, 254, 963-969 (1991)
[19] Nowak, M. A.; May, R. M.; Sigmund, K., Immune-responses against multiple epitopes, J. Theor. Biol., 175, 325-353 (1995)
[20] Nowak, M. A.; May, R. M.; Phillips, R. E.; Rowland-Jones, S.; Lalloo, D. G.; McAdams, S.; Klenerman, P.; Kope, B.; Sigmund, K.; Bangham, C. R.M; McMichael, A. J., Antigenic oscillations and shifting immunodominance in HIV-1 infections, Nature, 375, 606-611 (1995)
[21] Perelson, A. S., Modeling the interaction of HIV with the immune system, (Castillo-Chavez, C., Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, Vol. 83 (1989), Springer: Springer New York), 350-370 · Zbl 0682.00023
[22] Perelson, A. S.; Weisbuch, G., Immunology for physicists, Rev. Mod. Phys., 69, 1219-1267 (1997)
[23] Perelson, A. S.; Kirschner, D. E.; De Boer, R., Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114, 81-125 (1993) · Zbl 0796.92016
[24] Regoes, R. R.; Wodarz, D.; Nowak, M. A., Virus dynamics: the effect of target cell limitation and immune responses on virus evolution, J. Theor. Biol., 191, 451-462 (1998)
[25] Sasaki, A., Evolution of antigen drift/switching: continuously evading pathogens, J. Theor. Biol., 168, 291-308 (1994)
[26] Tilman, D., Resource Competition and Community Structure. Monographs in Population Biology (1982), Princeton University Press: Princeton University Press Princeton, NJ, 296pp
[27] Wahl, L. M.; Bittner, B.; Nowak, M. A., Immunological transitions in response to antigenic mutation during viral infection, Int. Immunol., 12, 1371-1380 (2000)
[28] Wei, X.; Decker, J. M.; Wang, S.; Hui, H.; Kappes, J. C.; Xiaoyun, W.; Salazar, J. F.; Salazar, M. G.; Kilby, J. M.; Saag, M. S.; Komarova, N. L.; Nowak, M. A.; Hahn, B. H.; Kwong, P. D.; Shaw, G. M., Antibody neutralization and escape by HIV-1, Nature, 422, 309-312 (2003)
[29] Wodarz, D.; Lloyd, A. L.; Jansen, V. A.A; Nowak, M. A., Dynamics of macrophage and T-cell infection by HIV, J. Theor. Biol., 196, 101-113 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.