×

On the entire self-shrinking solutions to Lagrangian mean curvature flow. (English) Zbl 1217.53069

Summary: We prove that the logarithmic Monge-Ampère flow with uniform bound and convex initial data satisfies uniform decay estimates away from time \(t = 0\). Then, applying the decay estimates, we conclude that every entire classical strictly convex solution of the equation
\[ \det D^{2}u=\exp\left\{n\left(-u+\tfrac{1}{2}\, \sum_{i=1}^{n}x_{i}\;\frac{\partial u}{\partial x_{i}} \right)\right\}, \]
should be a quadratic polynomial if the inferior limit of the smallest eigenvalue of the function \(|x|^{2} D^{2} u\) at infinity has an uniform positive lower bound larger than \(2(1 - 1/n)\). Using a similar method, we can prove that every classical convex or concave solution of the equation
\[ \sum_{i=1}^{n} \arctan\lambda_{i}=-u+\tfrac{1}{2}\, \sum_{i=1}^{n}x_{i}\;\frac{\partial u}{\partial x_{i}} \]
must be a quadratic polynomial, where \(\lambda_{i}\) are the eigenvalues of the Hessian \(D^{2} u\).

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] Bao J.G., Chen J.Y., Guan B., Jin M.: Liouville property and regularity of a Hessian quotient equation. Am. J. Math. 125, 301–316 (2003) · Zbl 1114.35067 · doi:10.1353/ajm.2003.0007
[2] Caffarelli L., Li Y.Y.: An extension to a theorem of Jörgens, Calabi, and Pogorelov. Commun. Pure Appl. Math. 56, 549–583 (2003) · Zbl 1236.35041 · doi:10.1002/cpa.10067
[3] Caffarelli L., Nirenberg L., Spruck J.: The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-ampere equation. Commun. Pure Appl. Math. 37, 369–402 (1984) · Zbl 0598.35047 · doi:10.1002/cpa.3160370306
[4] Calabi E.: Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J. 5, 105–126 (1958) · Zbl 0113.30104 · doi:10.1307/mmj/1028998055
[5] Chau, A., Chen, J.Y., He, W.Y.: Lagrangian mean curvature flow for entire lipschitz graphs. arXiv: 0902.3300 · Zbl 1238.53039
[6] Chau, A., Chen, J.Y., He, W.Y.: Entire self-similar solutions to Lagrangian mean curvature flow. arXiv: 0905.3869
[7] Colding, T.H., Minicozzi, W.P.: Generic mean curvature flow I; generic singularities. arXiv: 0908.3788 · Zbl 1239.53084
[8] Giga Y., Goto S., Ishii H., Sato M.H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana. Univ. Math. J. 40, 443–470 (1991) · Zbl 0836.35009 · doi:10.1512/iumj.1991.40.40023
[9] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2 edn. Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin (1998) · Zbl 1042.35002
[10] Groh K., Schwarz M., Smoczyk K., Zehmisch K.: Mean curvature flow of monotone Lagrangian submanifolds. Math. Z. 257, 295–327 (2007) · Zbl 1144.53084 · doi:10.1007/s00209-007-0126-3
[11] Harvey R., Lawson H.B.: Calibrated geometry. Acta Math. 148, 47–157 (1982) · Zbl 0584.53021 · doi:10.1007/BF02392726
[12] Huang, R.L.: Lagrangian mean Ccrvature flow In pseudo-Euclidean Space, prepint
[13] Huang, R.L., Bao, J.G.: The blow up analysis of the general curve shortening flow. arXiv:0908.2036 · Zbl 1225.35117
[14] Jörgens K.: ber die Lösungen der Differentialgleichung rt-s 2 = 1. Math. Ann. 127, 130–134 (1954) · Zbl 0055.08404 · doi:10.1007/BF01361114
[15] Jost J., Xin Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Results Math. 40, 233–245 (2001) · Zbl 0998.53036 · doi:10.1007/BF03322708
[16] Li, A.M., Xu, R.W.: A rigidity theorem for an affine Kähler-Ricci flat graph. Result. Math. (2009), pp. 1–24 · Zbl 1182.53049
[17] Nitsche J.C.C.: Elementary proof of Bernstein’s theorem on minimal surfaces. Ann. Math. 66, 543–544 (1957) · Zbl 0079.37702 · doi:10.2307/1969907
[18] Pogorelov A.V.: On the improper convex affine hyperspheres. Geom. Dedi. 1, 33–46 (1972) · Zbl 0251.53005
[19] Smoczyk K., Wang M.T.: Mean curvature flows of Lagrangian submanifolds with convex potentials. J. Diff. Geom. 62, 243–257 (2002) · Zbl 1070.53042
[20] Tso K.S.: On a real Monge-Ampere functional. Invent. Math. 101, 425–448 (1990) · Zbl 0724.35040 · doi:10.1007/BF01231510
[21] Yuan Y.: A Bernstein problem for special Lagrange equations. Invent. Math. 150, 117–125 (2002) · Zbl 1027.53055 · doi:10.1007/s00222-002-0232-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.