×

All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. (English) Zbl 1335.57019

In the 1990’s, E. Witten famously identified Chern-Simons theory on 3-manifolds as arising from topological string theory of the cotangent bundle in [Chern-Simons gauge theory as a string theory, in: H. Hofer (ed.) et al., The Floer memorial volume. Basel: Birkhäuser. Prog. Math. 133, 637–678 (1995; Zbl 0844.58018)]. More recently in [V. Bouchard et al., Commun. Math. Phys. 287, No. 1, 117–178 (2009; Zbl 1178.81214)], Bouchard, Klemm, Marino, and Pasquetti showed that amplitudes in topological string theory can be computed using the topological recursion of B. Eynard and N. Orantin defined in [Commun. Number Theory Phys. 1, No. 2, 347–452 (2007; Zbl 1161.14026)]. In light of this work, Dijkgraaf, Fuji, and Manabe conjectured that the topological recursion’s wave function applied to the \(SL_2(\mathbb C)\) character variety of a knot complement should coincide with the colored Jones polynomial in [R. Dijkgraaf et al., Nucl. Phys., B 849, No. 1, 166–211 (2011; Zbl 1215.81082)]. However their theory required the introduction of ad hoc constants in order to obtain a correct formula. Here, the authors propose an analogous approach using a non-perturbative wave function defined by B. Eynard and M. Mariño in [J. Geom. Phys. 61, No. 7, 1181–1202 (2011; Zbl 1215.81084)]. They conjecture that using this wave function applied to the \(SL_2(\mathbb C)\) character variety of a knot complement should coincide with the colored Jones polynomial without the introduction of constants. They verify this for the figure eight knot and for the once-punctured torus bundle \(L^2R\).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
15B52 Random matrices (algebraic aspects)
81T70 Quantization in field theory; cohomological methods

References:

[1] M. Aganagic, A.| Klemm, M. Mariño, and C. Vafa, The topological vertex. Comm. Math. Phys. 254 (2005), no. 2, 425-478. · Zbl 1114.81076 · doi:10.1007/s00220-004-1162-z
[2] M. Aganagic and C. Vafa, Large n duality, mirror symmetry, and a q-deformed A- polynomial for knots. Preprint 2012.
[3] J. Ambjørn and Y. Makeenko, Properties of loop equations for the Hermitian ma- trix model and for two-dimensional gravity. Mod. Phys. Lett. A 5 (1990), no. 22, 1753-1763. · Zbl 1020.81806 · doi:10.1142/S0217732390001992
[4] C. Beasley, Localization for Wilson loops in Chern-Simons theory. Adv. Theor. Math. Phys. 17 (2013), no. 1, 1-240. · Zbl 1290.81057 · doi:10.4310/ATMP.2013.v17.n1.a1
[5] M. Bergère, G. Borot, and B. Eynard, Rational differential systems, loop equations, and application to the qth Reductions of KP. Ann. Henri Poincaré , online first, Jan- uary 2015. · Zbl 1343.37061
[6] M. Bergère and B. Eynard, Determinantal formulae and loop equations. Pre- print 2009.
[7] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm. Math. Phys. 165 (1994), no. 2, 311-428. · Zbl 0815.53082 · doi:10.1007/BF02099774
[8] M. Bertola, Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. 1 (2011), no. 2-3, 167-211. · Zbl 1259.33021 · doi:10.1007/s13324-011-0012-3
[9] M. Bertola and M. Mo, Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights. Adv. Math. 220 (2009), no. 1, 154-218. · Zbl 1153.39027 · doi:10.1016/j.aim.2008.09.001
[10] D. Bertrand and W. Zudilin, On the transcendence degree of the differential field generated by Siegel modular forms. J. Reine Angew. Math. 554 (2003), 47-68. · Zbl 1130.11020 · doi:10.1515/crll.2003.008
[11] S. Bloch, Applications of the dilogarithm function in algebraic K-theory and alge- braic geometry. In M. Nagata (ed.), Proceedings of the International Symposium on Algebraic Geometry. A Taniguchi Symposium. Held at Kyoto University, Kyoto, January 10-14, 1977. Kinokuniya Book Store Co., Ltd., Tokyo, 103-114. · Zbl 0416.18016
[12] G. Borot and B. Eynard, Tracy-Widom GUE law and symplectic invariants. Preprint 2010.
[13] G. Borot and B. Eynard, Geometry of spectral curves and all order dispersive inte- grable system. SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 100, 53 pp. · Zbl 1270.14017 · doi:10.3842/SIGMA.2012.100
[14] V. Bouchard, J. Hutchinson, P. Loliencar, M. Meiers, and M. Rupert, A general- ized topological recursion for arbitrary ramification. Ann. Henri Poincaré 15 (2014), no. 1, 143-169. · Zbl 1291.81212 · doi:10.1007/s00023-013-0233-0
[15] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti, Remodeling the B-model. Comm. Math. Phys. 287 (2009), 117-178. · Zbl 1178.81214 · doi:10.1007/s00220-008-0620-4
[16] D. Boyd, F. Rodriguez-Villegas, and N. Dunfield, Mahler’s measure and the dilog- arithm (II). Preprint 2003.
[17] A. Brini, B. Eynard, and M. Mariño, Torus knots and mirror symmetry. Ann. Henri Poincaré 13 (2012), no. 8, 1873-1910. · Zbl 1256.81086 · doi:10.1007/s00023-012-0171-2
[18] J. Bruinier, G. van der Geer, G. Harder, and D. Zagier, The 1 2 3 of modular forms. Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004. Edited by K. Ranestad. Universitext. Springer, Berlin, 2008. · Zbl 1197.11047 · doi:10.1007/978-3-540-74119-0
[19] D. Calegari, Real places and torus bundles. Geom. Dedicata 118 (2006), 209-227. · Zbl 1420.57047
[20] A. Champanerkar, A-polynomials and Bloch invariants of hyperbolic 3 -mani- folds. PhD Thesis. Columbia University, New York, N.Y., 2003
[21] L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique for all genera. J. High Energy Phys. 2006 (2006), no. 3, article id. 014. · Zbl 1226.81137 · doi:10.1088/1126-6708/2006/03/014
[22] S. Chern and J. Simons, Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794. · Zbl 0209.25401 · doi:10.1073/pnas.68.4.791
[23] D. Cooper, M. Culler, H. Gillet, D. Long, and P. Shalen, Plane curves associ- ated to character varieties of 3-manifolds. Invent. Math. 118 (1994), no. 1, 47-84. · Zbl 0842.57013 · doi:10.1007/BF01231526
[24] M. Culler, A-polynomials in the tetrahedral census of knots.
[25] M. Culler, Personal webpage,
[26] R. Dijkgraaf and H. Fuji, The volume conjecture and topological strings. Fortsch. Phys. 57 (2009), no. 9 825-856. · Zbl 1210.81081 · doi:10.1002/prop.200900067
[27] R. Dijkgraaf, H. Fuji, and M. Manabe, The volume conjecture, perturbative knot invariants, and recursion relations for topological strings. Nucl. Phys. B 849 (2011), no. 1, 166-211. · Zbl 1215.81082 · doi:10.1016/j.nuclphysb.2011.03.014
[28] T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory. Adv. Theor. Math. Phys. 17 (2013), no. 3, 479-599. · Zbl 1304.81143 · doi:10.4310/ATMP.2013.v17.n3.a1
[29] T. Dimofte and S. Garoufalidis, The quantum content of the gluing equations. Geom. Topol. 17 (2013), no. 3, 1253-1315. · Zbl 1283.57017 · doi:10.2140/gt.2013.17.1253
[30] T. Dimofte, S. Gukov, J. Lennels, and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group. Commun. Number Theory Phys. 3 (2009), no. 2, 363-443. · Zbl 1214.81151 · doi:10.4310/CNTP.2009.v3.n2.a4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.