×

The quantum content of the gluing equations. (English) Zbl 1283.57017

Let \(\langle{K}\rangle_N\in\mathbb{C}\) be the Kashaev invariant of a knot \(K\) in the three-sphere \(S^3\) [R. M. Kashaev, Mod. Phys. Lett. A 10, No. 19, 1409–1418 (1995; Zbl 1022.81574)], which turned out to coincide with the colored Jones polynomial \(J_N(K;q)\) evaluated at \(q=\exp(2\pi\sqrt{-1}/N)\), cf. H. Murakami and J. Murakami [Acta Math. 186, No.1, 85–104 (2001; Zbl 0983.57009)]. Kashaev conjectured that for a hyperbolic knot (a knot whose complement possesses a complete hyperbolic structure with finite volume), the limit \(\lim_{N\to\infty}N^{-1}\log|\langle{K}\rangle_N|\) exists and equals \(\text{Vol}(M)/(2\pi)\), cf. R. M. Kashaev [Lett. Math. Phys. 39, No. 3, 269–275 (1997; Zbl 0876.57007)], where \(M:=S^3\setminus{K}\) and \(\text{Vol}\) is the hyperbolic volume. It is also expected that the Kashaev invariant has the following asymptotic expansion: \[ \exp\left(\hbar^{-1}S_{M,0}-\frac{3}{2}\log\hbar+S_{M,1}+\sum_{n=2}^{\infty}\hbar^{n-1}S_{M,n}\right) \] with \(\hbar:=2\pi\sqrt{-1}/N\), S. Gukov [Commun. Math. Phys. 255, No. 3, 577–627 (2005; Zbl 1115.57009)]. Here \(S_{M,0}\) is the complexified volume, that is, \(S_{M,0}=\sqrt{-1}\bigl(\text{Vol}(M)+\sqrt{-1}\text{CS}(M)\bigr)\) with \(\text{CS}\) the Chern–Simons invariant. The constant term \(S_{M,1}\) is conjectured to be related to the non-Abelian Reidemeister–Ray–Singer torsion \(\tau^{\roman{R}}_M\) of the holonomy representation, which defines the complete hyperbolic structure, with respect to the meridian, J. Porti [Mem. Am. Math. Soc. 612, 139 p. (1997; Zbl 0881.57020)] in the following way: \(\tau^{\roman{R}}_M=4\pi^3\exp(-2S_{M,1})\). Note that \(\tau^{\roman{R}}_M\) belongs to the invariant trace field \(E_M\), [J. Dubois and S. Garoufalidis, “Rationality of the SL(2,\(\mathbb C\))-Reidemeister torsion in dimension 3”, arXiv:0908.1690]. It is also conjectured that for any \(n\geq2\), \(S_{M,n}\) is in \(E_M\), [T. Dimofte et al., Commun. Number Theory Phys. 3, No. 2, 363–443 (2009; Zbl 1214.81151)].
In the paper under review, the authors introduce a topological invariant \(\tau_{M}\) for a one-cusped hyperbolic three-manifold \(M\), and conjecture that \(\tau_{M}=\pm\tau^{\roman{R}}_{M}\) if \(M\) is the complement of a hyperbolic knot.
Given an ideal triangulation \(\mathcal{T}\), let \(V_{\mathcal{T}}\) denote the affine variety of solutions (in \(\mathbb{C}\setminus\{0,1\}\)) of the gluing equations of \(\mathcal{T}\). For a representation \(\rho:\pi_1(M)\to\text{PSL}(2;\mathbb{C})\), let \(\mathcal{X}_{\rho}\) be the set of \(\rho\)-regular ideal triangulations of \(M\), where an ideal triangulation \(\mathcal{T}\) is called \(\rho\)-regular if \(\rho\) is in the image of the developing map \(V_{\mathcal{T}}\to\text{Hom}(\pi_1(M),\text{PSL}(2,\mathbb{C}))/\text{PSL}(2,\mathbb{C})\). An ideal triangulation of a hyperbolic knot is called regular if it is \(\rho_0\)-regular for the holonomy representation \(\rho_0\).
To define \(\tau_{M}\), one needs to fix a regular ideal triangulation and an enhanced Neumann–Zagier datum. Here an enhanced Neumann–Zagier datum is a quadruple \((z,\mathbf{A},\mathbf{B},f)\), where \(z=(z_1,\dots,z_N)\) is a collection of shape parameters for ideal hyperbolic tetrahedra, \(\mathbf{A}\) and \(\mathbf{B}\) are \(N\times N\) matrices over the integers that define how to glue the tetrahedra, and \(f=(f_1,f'_1,f''_1,\dots,f_N,f'_N,f''_N)\) is a collection of \(3N\) integers called a combinatorial flattening of the triangulation introduced in [W. D. Neumann, Topology ’90, Contrib. Res. Semester Low Dimensional Topol., Columbus/OH (USA) 1990, Ohio State Univ. Math. Res. Inst. Publ. 1, 243–271 (1992; Zbl 0768.57006)] to calculate the Chern–Simons invariant combinatorially.
To prove the invariance of \(\tau_{M}\), the authors show that it is invariant under \(2\)-\(3\) moves. Then they observe that any two regular refinements of the canonical ideal cell decomposition by D. B. A. Epstein and R. C. Penner [J. Differ. Geom. 27, No.1, 67–80 (1988; Zbl 0611.53036)] can be connected by a finite sequence of \(2\)-\(3\) moves in \(\mathcal{X}_{\rho_0}\), proving the topological invariance of \(\tau_{M}\).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57N10 Topology of general \(3\)-manifolds (MSC2010)

Software:

SnapPy

References:

[1] M Aganagic, V Bouchard, A Klemm, Topological strings and (almost) modular forms, Comm. Math. Phys. 277 (2008) 771 · Zbl 1165.81037 · doi:10.1007/s00220-007-0383-3
[2] J Andersen, R Kashaev, A TQFT from quantum Teichmüller theory · Zbl 1305.57024 · doi:10.1007/s00220-014-2073-2
[3] D Bar-Natan, E Witten, Perturbative expansion of Chern-Simons theory with noncompact gauge group, Comm. Math. Phys. 141 (1991) 423 · Zbl 0738.53041 · doi:10.1007/BF02101513
[4] E W Barnes, The genesis of the double gamma functions, Proc. London Math. Soc. 31 (1899) 358 · JFM 30.0389.03 · doi:10.1112/plms/s1-31.1.358
[5] R Benedetti, C Petronio, Branched standard spines of \(3\)-manifolds, Lecture Notes in Mathematics 1653, Springer (1997) · Zbl 0873.57002 · doi:10.1007/BFb0093620
[6] D Bessis, C Itzykson, J B Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980) 109 · Zbl 0453.05035 · doi:10.1016/0196-8858(80)90008-1
[7] D W Boyd, N M Dunfield, F Rodriguez-Villegas, Mahler’s measure and the dilogarithm (II) · Zbl 1032.11028 · doi:10.4153/CJM-2002-016-9
[8] B A Burton, Regina: Normal surface and \(3\)-manifold topology software · Zbl 1090.57003
[9] D Calegari, Real places and torus bundles, Geom. Dedicata 118 (2006) 209 · Zbl 1420.57047 · doi:10.1007/s10711-005-9037-9
[10] B G Casler, An imbedding theorem for connected \(3\)-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965) 559 · Zbl 0129.15801 · doi:10.2307/2033878
[11] A A Champanerkar, \(A\)-polynomial and Bloch invariants of hyperbolic \(3\)-manifolds, PhD thesis, Columbia University (2003)
[12] D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of \(3\)-manifolds, Invent. Math. 118 (1994) 47 · Zbl 0842.57013 · doi:10.1007/BF01231526
[13] M Culler, N M Dunfield, J R Weeks, SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds (2011)
[14] J A De Loera, J Rambau, F Santos, Triangulations, Algorithms and Computation in Mathematics 25, Springer (2010) · Zbl 1207.52002 · doi:10.1007/978-3-642-12971-1
[15] T Dimofte, Quantum Riemann surfaces in Chern-Simons theory · Zbl 1304.81143 · doi:10.4310/ATMP.2013.v17.n3.a1
[16] T Dimofte, D Gaiotto, S Gukov, Gauge theories labelled by three-manifolds · Zbl 1292.57012 · doi:10.1007/s00220-013-1863-2
[17] T Dimofte, S Gukov, J Lenells, D Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009) 363 · Zbl 1214.81151 · doi:10.4310/CNTP.2009.v3.n2.a4
[18] J Dubois, Non abelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull. 49 (2006) 55 · Zbl 1101.57010 · doi:10.4153/CMB-2006-006-0
[19] J Dubois, S Garoufalidis, Rationality of the \(\mathrm{SL}(2,\mathbbC)\)-Reidemeister torsion in dimension \(3\) · Zbl 1333.57034
[20] N M Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999) 623 · Zbl 0928.57012 · doi:10.1007/s002220050321
[21] N M Dunfield, S Friedl, N Jackson, Twisted Alexander polynomials of hyperbolic knots, Exp. Math. 21 (2012) 329 · Zbl 1266.57008 · doi:10.1080/10586458.2012.669268
[22] N M Dunfield, S Garoufalidis, Incompressibility criteria for spun-normal surfaces, Trans. Amer. Math. Soc. 364 (2012) 6109 · Zbl 1281.57012 · doi:10.1090/S0002-9947-2012-05663-7
[23] J L Dupont, C H Sah, Scissors congruences, II, J. Pure Appl. Algebra 25 (1982) 159 · Zbl 0496.52004 · doi:10.1016/0022-4049(82)90035-4
[24] J L Dupont, C K Zickert, A dilogarithmic formula for the Cheeger-Chern-Simons class, Geom. Topol. 10 (2006) 1347 · Zbl 1130.57013 · doi:10.2140/gt.2006.10.1347
[25] D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67 · Zbl 0611.53036
[26] B Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves · Zbl 1310.14037 · doi:10.4310/CNTP.2014.v8.n3.a4
[27] L D Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249 · Zbl 0836.47012 · doi:10.1007/BF01872779
[28] L D Faddeev, R M Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994) 427 · Zbl 0866.17010 · doi:10.1142/S0217732394000447
[29] L D Faddeev, R M Kashaev, A Y Volkov, Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality, Comm. Math. Phys. 219 (2001) 199 · Zbl 0981.81052 · doi:10.1007/s002200100412
[30] V V Fok, L O Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511 · Zbl 0986.32007 · doi:10.1007/BF02557246
[31] S Garoufalides, D Zagier, Empirical relations betwen \(q\)-series and Kashaev’s invariant of knots, Preprint (2013)
[32] S Garoufalidis, Quantum knot invariants, Mathematische Arbeitstagung talk 2011
[33] S Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monogr. 7 (2004) 291 · Zbl 1080.57014 · doi:10.2140/gtm.2004.7.291
[34] S Garoufalidis, Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam. 33 (2008) 335 · Zbl 1189.57010
[35] S Garoufalidis, C D Hodgson, J H Rubinstein, H Segerman, \(1\)-efficient triangulations and the index of a cusped hyperbolic \(3\)-manifold · Zbl 1330.57029
[36] S Garoufalidis, T T Q Lê, Asymptotics of the colored Jones function of a knot, Geom. Topol. 15 (2011) 2135 · Zbl 1239.57029 · doi:10.2140/gt.2011.15.2135
[37] S Garoufalidis, D Zagier, Asymptotics of quantum knot invariants, Preprint (2013)
[38] S Goette, C K Zickert, The extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 11 (2007) 1623 · Zbl 1201.57019 · doi:10.2140/gt.2007.11.1623
[39] S Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the \(A\)-polynomial, Comm. Math. Phys. 255 (2005) 577 · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[40] S Gukov, H Murakami, \(\mathrm{SL}(2,\mathbbC)\) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys. 86 (2008) 79 · Zbl 1183.57012 · doi:10.1007/s11005-008-0282-3
[41] S Gukov, P Sułkowski, \(A\)-polynomial, \(B\)-model, and quantization, J. High Energy Phys. (2012) 070
[42] K Hikami, Hyperbolic structure arising from a knot invariant, Internat. J. Modern Phys. A 16 (2001) 3309 · Zbl 0983.57011 · doi:10.1142/S0217751X0100444X
[43] K Hikami, Generalized volume conjecture and the \(A\)-polynomials: the Neumann-Zagier potential function as a classical limit of the partition function, J. Geom. Phys. 57 (2007) 1895 · Zbl 1139.57013 · doi:10.1016/j.geomphys.2007.03.008
[44] C D Hodgson, J H Rubinstein, H Segerman, Triangulations of hyperbolic \(3\)-manifolds admitting strict angle structures · Zbl 1262.57018 · doi:10.1112/jtopol/jts022
[45] K Hori, S Katz, A Klemm, R Pandharipande, R Thomas, C Vafa, R Vakil, E Zaslow, Mirror symmetry, Clay Mathematics Monographs 1, Amer. Math. Soc. (2003) · Zbl 1044.14018
[46] V F R Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987) 335 · Zbl 0631.57005 · doi:10.2307/1971403
[47] E Kang, Normal surfaces in non-compact \(3\)-manifolds, J. Aust. Math. Soc. 78 (2005) 305 · Zbl 1077.57016 · doi:10.1017/S1446788700008557
[48] E Kang, J H Rubinstein, Ideal triangulations of \(3\)-manifolds, I: Spun normal surface theory (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 235 · Zbl 1085.57016 · doi:10.2140/gtm.2004.7.235
[49] R M Kashaev, Quantum dilogarithm as a \(6j\)-symbol, Modern Phys. Lett. A 9 (1994) 3757 · Zbl 1015.17500 · doi:10.1142/S0217732394003610
[50] R M Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409 · Zbl 1022.81574 · doi:10.1142/S0217732395001526
[51] R M Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105 · Zbl 0897.57014 · doi:10.1023/A:1007460128279
[52] S V Matveev, Transformations of special spines, and the Zeeman conjecture, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) 1104, 1119 · Zbl 0642.57003
[53] S Matveev, Algorithmic topology and classification of \(3\)-manifolds, Algorithms and Computation in Mathematics 9, Springer (2007) · Zbl 1128.57001 · doi:10.1007/978-3-540-45899-9
[54] W Müller, Analytic torsion and \(R\)-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993) 721 · Zbl 0789.58071 · doi:10.2307/2152781
[55] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85 · Zbl 0983.57009 · doi:10.1007/BF02392716
[56] W D Neumann, Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic \(3\)-manifolds (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 243 · Zbl 0768.57006
[57] W D Neumann, Extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 8 (2004) 413 · Zbl 1053.57010 · doi:10.2140/gt.2004.8.413
[58] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 · Zbl 0589.57015 · doi:10.1016/0040-9383(85)90004-7
[59] R Piergallini, Standard moves for standard polyhedra and spines, Rend. Circ. Mat. Palermo Suppl. (1988) 391 · Zbl 0672.57004
[60] M Polyak, Feynman diagrams for pedestrians and mathematicians (editors M Lyubich, L Takhtajan), Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 15 · Zbl 1080.81047
[61] B Ponsot, J Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of \(\mathcal U_q(\mathrm{sl}(2,\mathbbR))\), Comm. Math. Phys. 224 (2001) 613 · Zbl 1010.33013 · doi:10.1007/PL00005590
[62] J Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997) · Zbl 0881.57020
[63] D B Ray, I M Singer, \(R\)-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145 · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[64] D Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962) 149 · Zbl 0171.46901 · doi:10.2307/1993745
[65] V P Spiridonov, G S Vartanov, Elliptic hypergeometry of supersymmetric dualities II: orthogonal groups, knots, and vortices · Zbl 1285.81064 · doi:10.1007/s00220-013-1861-4
[66] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
[67] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[68] S Tillmann, Normal surfaces in topologically finite \(3\)-manifolds, Enseign. Math. 54 (2008) 329 · Zbl 1214.57022
[69] S Tillmann, Degenerations of ideal hyperbolic triangulations, Math. Z. 272 (2012) 793 · Zbl 1271.57029 · doi:10.1007/s00209-011-0958-8
[70] V G Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988) 527 · Zbl 0648.57003 · doi:10.1007/BF01393746
[71] A Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964) 143 · Zbl 0203.03305 · doi:10.1007/BF02391012
[72] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 · Zbl 0726.57010
[73] E Witten, Quantization of Chern-Simons gauge theory with complex gauge group, Comm. Math. Phys. 137 (1991) 29 · Zbl 0717.53074 · doi:10.1007/BF02099116
[74] Y Yamaguchi, A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier (Grenoble) 58 (2008) 337 · Zbl 1158.57027 · doi:10.5802/aif.2352
[75] C K Zickert, The volume and Chern-Simons invariant of a representation, Duke Math. J. 150 (2009) 489 · Zbl 1246.58019 · doi:10.1215/00127094-2009-058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.