Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

Chiral anomalies have profound impact on the transport properties of relativistic fluids. In four dimensions there are different types of anomalies, pure gauge and mixed gauge-gravitational anomalies. They give rise to two new non-dissipative transport coefficients, the chiral magnetic conductivity and the chiral vortical conductivity. They can be calculated from the microscopic degrees of freedom with the help of Kubo formulae. We review the calculation of the anomalous transport coefficients via Kubo formulae with a particular emphasis on the contribution of the mixed gauge-gravitational anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See however the very recent attempts to establish non-renormalization theorems in [37] and [38].

  2. 2.

    A recent comprehensive review on BRST symmetry is [48].

  3. 3.

    In D=4k+2 dimensions also purely gravitational anomalies can appear [52].

  4. 4.

    If dynamical gauge fields are present, such as the gluon fields in QCD even the one point function of the charge does decay over (real) time due to non-perturbative processes (instantons) or at finite temperature due to thermal sphaleron processes [54]. Even in this case in the limit of large number of colors these processes are suppressed and can e.g. not be seen in holographic models in the supergravity approximation.

  5. 5.

    It is possible to define a generalized formalism to make any choice for the gauge field A 0=ν, so that one recovers formalism (A) when ν=μ and formalism (B) when ν=0 as particular cases (see [55] for details).

  6. 6.

    Notice that h 0y can also be understood as the so-called gravito-magnetic vector potential A g , which is related to the gravito-magnetic field by . This allows to interpret σ V not only as the generation of a current due to a vortex in the fluid, i.e. the chiral vortical effect, but also as a chiral gravito-magnetic conductivity giving rise to a chiral gravito-magnetic effect, see [56] for details.

  7. 7.

    The chemical potential is introduced as the energy needed to introduce an unit of charge from the boundary to behind the horizon A(∞)−A(r H) which corresponds to the prescription (B) in Table 17.1. Observe that we have left the source value A(∞)=ν as an arbitrary constant for reasons we will explain later.

  8. 8.

    The complete system of equations depending on frequency and momentum is showed in Appendix 2. The system consists of six dynamical equations and two constraints.

  9. 9.

    is coming from the counterterms of the theory.

  10. 10.

    In principle A 0 could be gauged away for the symmetric case and in consequence observables should not depend on its value. For example look at [45] to see how in presence of a U(1) V ×U(1) A symmetry with only the U(1) V conserved, propagators do not depend on the specific value of the zero component of the vector gauge source V 0.

  11. 11.

    For a four dimensional holographic model with gravitational Chern-Simons term and a scalar field this has also been shown in [65].

References

  1. R.A. Bertlmann, International Series of Monographs on Physics, vol. 91 (Clarendon, Oxford, 1996), p. 566

    Google Scholar 

  2. F. Bastianelli, P. van Nieuwenhuizen (Cambridge University Press, Cambridge, 2006), p. 379

    Google Scholar 

  3. K. Fujikawa, H. Suzuki (Clarendon, Oxford, 2004), p. 284

    Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, 2nd edn. (Butterworth-Heinemann, Offord, January 15, 1987), p. 556

    Google Scholar 

  5. I. Müller, Z. Phys. 198, 329 (1967)

    Article  ADS  MATH  Google Scholar 

  6. W. Israel, Ann. Phys. 100, 310 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  7. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, J. High Energy Phys. 0804, 100 (2008). arXiv:0712.2451 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, J. High Energy Phys. 0802, 045 (2008). arXiv:0712.2456 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  10. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]. hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  11. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). hep-th/9802150

    MathSciNet  ADS  MATH  Google Scholar 

  12. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998). hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  13. S.S. Gubser, I.R. Klebanov, A.W. Peet, Phys. Rev. D 54, 3915 (1996). hep-th/9602135

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). hep-th/9803131

    MathSciNet  MATH  Google Scholar 

  15. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). hep-th/0405231

    Article  ADS  Google Scholar 

  16. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, arXiv:1101.0618 [hep-th]

  17. A. Vilenkin, Phys. Rev. D 20, 1807 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Vilenkin, Phys. Rev. D 21, 2260 (1980)

    Article  ADS  Google Scholar 

  19. A. Vilenkin, Phys. Rev. D 22, 3067 (1980)

    Article  ADS  Google Scholar 

  20. A. Vilenkin, Phys. Rev. D 22, 3080 (1980)

    Article  ADS  Google Scholar 

  21. M. Giovannini, M.E. Shaposhnikov, Phys. Rev. D 57, 2186 (1998). hep-ph/9710234

    Article  ADS  Google Scholar 

  22. A.Y. Alekseev, V.V. Cheianov, J. Frohlich, Phys. Rev. Lett. 81, 3503 (1998). cond-mat/9803346

    Article  ADS  Google Scholar 

  23. G.M. Newman, D.T. Son, Phys. Rev. D 73, 045006 (2006). hep-ph/0510049

    Article  ADS  Google Scholar 

  24. G.M. Newman, J. High Energy Phys. 0601, 158 (2006). hep-ph/0511236

    Article  ADS  Google Scholar 

  25. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  26. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). arXiv:0808.3382 [hep-ph]

    Article  ADS  Google Scholar 

  27. J. Erdmenger, M. Haack, M. Kaminski, A. Yarom, J. High Energy Phys. 0901, 055 (2009). arXiv:0809.2488 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam, P. Surowka, J. High Energy Phys. 1101, 094 (2011). arXiv:0809.2596 [hep-th]

    Article  ADS  Google Scholar 

  29. D.T. Son, P. Surowka, Phys. Rev. Lett. 103, 191601 (2009). arXiv:0906.5044 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  30. Y. Neiman, Y. Oz, J. High Energy Phys. 1103, 023 (2011). arXiv:1011.5107 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Kalaydzhyan, I. Kirsch, Phys. Rev. Lett. 106, 211601 (2011). arXiv:1102.4334 [hep-th]

    Article  ADS  Google Scholar 

  32. I. Gahramanov, T. Kalaydzhyan, I. Kirsch, Phys. Rev. D 85, 126013 (2012). arXiv:1203.4259 [hep-th]

    Article  ADS  Google Scholar 

  33. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 034028 (2009). arXiv:0907.5007 [hep-ph]

    Article  ADS  Google Scholar 

  34. I. Amado, K. Landsteiner, F. Pena-Benitez, J. High Energy Phys. 1105, 081 (2011). arXiv:1102.4577 [hep-th]

    Article  ADS  Google Scholar 

  35. K. Landsteiner, E. Megias, F. Pena-Benitez, Phys. Rev. Lett. 107, 021601 (2011). arXiv:1103.5006 [hep-ph]

    Article  ADS  Google Scholar 

  36. K. Landsteiner, E. Megias, L. Melgar, F. Pena-Benitez, J. High Energy Phys. 1109, 121 (2011). arXiv:1107.0368 [hep-th]

    Article  ADS  Google Scholar 

  37. S. Golkar, D.T. Son, arXiv:1207.5806 [hep-th]

  38. K. Jensen, R. Loganayagam, A. Yarom, J. High Energy Phys. 1302, 088 (2013). arXiv:1207.5824 [hep-th]

    Article  ADS  Google Scholar 

  39. R. Loganayagam, P. Surowka, J. High Energy Phys. 1204, 097 (2012). arXiv:1201.2812 [hep-th]

    Article  ADS  Google Scholar 

  40. R. Loganayagam, arXiv:1106.0277 [hep-th]

  41. K. Jensen, Phys. Rev. D 85, 125017 (2012). arXiv:1203.3599 [hep-th]

    Article  ADS  Google Scholar 

  42. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla, T. Sharma, J. High Energy Phys. 1209, 046 (2012). arXiv:1203.3544 [hep-th]

    Article  ADS  Google Scholar 

  43. H.-U. Yee, J. High Energy Phys. 0911, 085 (2009). arXiv:0908.4189 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Rebhan, A. Schmitt, S.A. Stricker, J. High Energy Phys. 1001, 026 (2010). arXiv:0909.4782 [hep-th]

    Article  ADS  Google Scholar 

  45. A. Gynther, K. Landsteiner, F. Pena-Benitez, A. Rebhan, J. High Energy Phys. 1102, 110 (2011). arXiv:1005.2587 [hep-th]

    Article  ADS  Google Scholar 

  46. K. Landsteiner, E. Megias, L. Melgar, F. Pena-Benitez, J. Phys. Conf. Ser. 343, 012073 (2012). arXiv:1111.2823 [hep-th]

    Article  ADS  Google Scholar 

  47. W.A. Bardeen, Phys. Rev. 184, 1848 (1969)

    Article  ADS  Google Scholar 

  48. N. Dragon, F. Brandt, arXiv:1205.3293 [hep-th]

  49. T. Kimura, Prog. Theor. Phys. 42(5), 1191 (1969)

    Article  ADS  Google Scholar 

  50. R. Delbourgo, A. Salam, Phys. Lett. B 40, 381 (1972)

    ADS  Google Scholar 

  51. T. Eguchi, P.G.O. Freund, Phys. Rev. Lett. 37, 1251 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  52. L. Alvarez-Gaume, E. Witten, Nucl. Phys. B 234, 269 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  53. T.S. Evans, hep-ph/9510298

  54. G.D. Moore, M. Tassler, J. High Energy Phys. 1102, 105 (2011). arXiv:1011.1167 [hep-ph]

    Article  ADS  Google Scholar 

  55. K. Landsteiner, E. Megias, L. Melgar, F. Pena-Benitez, Fortschr. Phys. 60(9–10), 1064–1070 (2012). doi:10.1002/prop.201200021

    Article  MathSciNet  MATH  Google Scholar 

  56. K. Landsteiner, E. Megias, F. Pena-Benitez, arXiv:1110.3615 [hep-ph]

  57. D.T. Son, A.R. Zhitnitsky, Phys. Rev. D 70, 074018 (2004). hep-ph/0405216

    Article  ADS  Google Scholar 

  58. D.T. Son, A.O. Starinets, J. High Energy Phys. 0209, 042 (2002). hep-th/0205051

    Article  MathSciNet  ADS  Google Scholar 

  59. C.P. Herzog, D.T. Son, J. High Energy Phys. 0303, 046 (2003). hep-th/0212072

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock, J. Tarrio, J. High Energy Phys. 1002, 021 (2010). arXiv:0911.3610 [hep-th]

    Article  ADS  Google Scholar 

  61. I. Amado, M. Kaminski, K. Landsteiner, J. High Energy Phys. 0905, 021 (2009). arXiv:0903.2209 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  62. K. Landsteiner, L. Melgar, J. High Energy Phys. 1210, 131 (2012). arXiv:1206.4440 [hep-th]

    Article  ADS  Google Scholar 

  63. Y. Neiman, Y. Oz, J. High Energy Phys. 1109, 011 (2011). arXiv:1106.3576 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  64. L. Bonora, M. Cvitan, P.D. Prester, S. Pallua, I. Smolic, Class. Quant. Grav. 28, 195009 (2011). arXiv:1105.4792 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  65. T. Delsate, V. Cardoso, P. Pani, J. High Energy Phys. 1106, 055 (2011). arXiv:1103.5756 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  66. V.P. Nair, R. Ray, S. Roy, Phys. Rev. D 86, 025012 (2012). arXiv:1112.4022 [hep-th]

    Article  ADS  Google Scholar 

  67. B. Keren-Zur, Y. Oz, J. High Energy Phys. 1006, 006 (2010). arXiv:1002.0804 [hep-ph]

    Article  ADS  Google Scholar 

  68. S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, J. High Energy Phys. 0802, 045 (2008). arXiv:0712.2456 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  69. D.E. Kharzeev, H.-U. Yee, Phys. Rev. D 84, 045025 (2011). arXiv:1105.6360 [hep-th]

    Article  ADS  Google Scholar 

  70. S. Bhattacharyya, J. High Energy Phys. 1207, 104 (2012). arXiv:1201.4654 [hep-th]

    ADS  Google Scholar 

  71. E. Megias, F. Pena-Benitez, Holographic gravitational anomaly in first and second order hydrodynamics, Preprint IFT-UAM/CSIC-13-039

    Google Scholar 

  72. T.E. Clark, S.T. Love, T. ter Veldhuis, Phys. Rev. D 82, 106004 (2010). arXiv:1006.2400 [hep-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Plan Nacional de Altas Energías FPA2009-07908, FPA2008-01430 and FPA2011-25948, CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473. E. Megías would like to thank the Institute for Nuclear Theory at the University of Washington, USA, and the Institut für Theoretische Physik at the Technische Universität Wien, Austria, for their hospitality and partial support during the completion of this work. The research of E.M. is supported by the Juan de la Cierva Program of the Spanish MICINN. F.P. has been supported by fellowship FPI Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Landsteiner .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Boundary Counterterms

The result one gets for the counterterm coming from the regularization of the boundary action of the holographic model in Sect. 17.4 is

(17.128)

where hat on the fields means the induced field on the cut-off surface and

$$ P = \frac{1}{6}\widehat{R}, \qquad P^i_j = \frac{1}{2} \bigl[ \widehat{R}^i_j - P \delta^i_j \bigr]. $$
(17.129)

As a remarkable fact there is no contribution in the counterterm coming from the gauge-gravitational Chern-Simons term. This has also been derived in [72] in a similar model that does however not contain S CSK .

Appendix 2: Equations of Motion for the Shear Sector

These are the complete linearized set of six dynamical equations of motion,

(17.130)
(17.131)
(17.132)

and two constraints for the fluctuations at ω,k≠0

(17.133)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landsteiner, K., Megías, E., Peña-Benitez, F. (2013). Anomalous Transport from Kubo Formulae. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_17

Download citation

Publish with us

Policies and ethics