×

On \(p\)-Bernoulli numbers and polynomials. (English) Zbl 1332.11027

Summary: In this paper we define a new family of \(p\)-Bernoulli numbers, which are derived from the Gaussian hypergeometric function, and we establish some basic properties. Based on a three-term recurrence relation, an algorithm for computing Bernoulli numbers is given. A similar algorithm for Bernoulli polynomials is also presented. We show that the \(p\)-Bernoulli numbers are related to the certain regular values of the Euler-Zagier’s multiple zeta function at non-positive integers of depth \(p\). Finally, a generalization and some applications on \(m\)-Fubini numbers are given.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11M32 Multiple Dirichlet series and zeta functions and multizeta values
Full Text: DOI

References:

[1] Akiyama, S.; Egami, S.; Tanigawa, Y., Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., 98, 2, 107-116 (2001) · Zbl 0972.11085
[2] Akiyama, S.; Tanigawa, Y., Multiple zeta values at non-positive integers, Ramanujan J., 5, 4, 327-351 (2001) · Zbl 1002.11069
[3] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[4] Aoki, T.; Kombu, Y.; Ohno, Y., A generating function for sums of multiple zeta values and its applications, Proc. Amer. Math. Soc., 136, 2, 387-395 (2008) · Zbl 1215.11086
[5] Aoki, T.; Ohno, Y.; Wakabayashi, N., On generating functions of multiple zeta values and generalized hypergeometric functions, Manuscripta Math., 134, 1-2, 139-155 (2011) · Zbl 1219.11129
[6] Atkinson, M. D., How to compute the series expansions of sec x and tan x, Amer. Math., 5, 387-389 (1986) · Zbl 0603.65013
[7] Broder, A. Z., The \(r\)-Stirling numbers, Discrete Math., 49, 3, 241-259 (1984) · Zbl 0535.05006
[8] Chang, C.-H.; Ha, C.-W., A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials, J. Math. Anal. Appl., 315, 758-767 (2006) · Zbl 1102.11048
[9] Chen, K.-W., Algorithms for Bernoulli numbers and Euler numbers, J. Integer Seq., 4, 1 (2001), Article 01.1.6 · Zbl 0973.11021
[10] Comtet, L., Advanced Combinatorics (1974), D. Reidel Publishing Co. · Zbl 0283.05001
[11] Dumont, D., Matrices d’Euler-Seidel, Sémin. Lothar. Comb., 5, B05c (1981), 25 pp · Zbl 0925.05025
[12] Eie, M.; Wei, C.-S., Generalizations of Euler decomposition and their applications, J. Number Theory, 133, 8, 2475-2495 (2013) · Zbl 1286.11134
[13] Gessel, I., Congruences for Bell and tangent numbers, Fibonacci Quart., 19, 2, 137-144 (1981) · Zbl 0451.10008
[14] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics: A Foundation for Computer Science (1994), Addison-Wesley · Zbl 0836.00001
[15] Granville, A., A decomposition of Riemann’s zeta-function, (Analytic Number Theory. Analytic Number Theory, Kyoto, 1996. Analytic Number Theory. Analytic Number Theory, Kyoto, 1996, London Math. Soc. Lecture Note Ser., vol. 247 (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 95-101 · Zbl 0907.11024
[16] Gross, O. A., Preferential arrangements, Amer. Math. Monthly, 69, 4-8 (1962) · Zbl 0111.15701
[17] Guo, L.; Zhang, B., Renormalization of multiple zeta values, J. Algebra, 319, 3770-3809 (2008) · Zbl 1165.11071
[18] Hoffman, M. E., Multiple harmonic series, Pac. J. Math., 152, 2, 275-290 (1992) · Zbl 0763.11037
[19] Hoffman, M. E., The algebra of multiple harmonic series, J. Algebra, 194, 2, 477-495 (1997) · Zbl 0881.11067
[20] Hoffman, M. E.; Ohno, Y., Relations of multiple zeta values and their algebraic expression, J. Algebra, 262, 2, 332-347 (2003) · Zbl 1139.11322
[21] Ihara, K.; Kaneko, M.; Zagier, D., Derivation and double shuffle relations for multiple zeta values, Compos. Math., 142, 2, 307-338 (2006) · Zbl 1186.11053
[22] Kaneko, M., The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Seq., 3 (2000), Article 00.2.9 · Zbl 0982.11009
[23] Knuth, D. E.; Buckholtz, T. J., Computation of tangent, Euler, and Bernoulli numbers, Math. Comp., 21, 663-688 (1967) · Zbl 0178.04401
[24] Mező, I., Periodicity of the last digits of some combinatorial sequences, J. Integer Seq., 17, 1 (2014), Article 14.1.1, 18 pp · Zbl 1295.05050
[25] Nakamura, T.; Tasaka, K., Remarks on double zeta values of level 2, J. Number Theory, 133, 1, 48-54 (2013) · Zbl 1310.11092
[26] Ohno, Y.; Zagier, D., A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory, 74, 39-43 (1999) · Zbl 0920.11063
[27] Ohno, Y.; Zagier, D., Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.), 12, 4, 483-487 (2001) · Zbl 1031.11053
[28] Rahmani, M., The Akiyama-Tanigawa matrix and related combinatorial identities, Linear Algebra Appl., 438, 219-230 (2013) · Zbl 1257.05010
[29] Rahmani, M., Generalized Stirling transform, Miskolc Math. Notes, 2, 2, 677-690 (2014) · Zbl 1324.11024
[30] Roman, S., The Umbral Calculus (1984), Academic Press: Academic Press New York · Zbl 0536.33001
[31] Seidel, L., Ueber eine einfache Entstehungsweise der Bernoulli’schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, 7, 157-187 (1877)
[32] Shen, Z.; Cai, T., Some identities for multiple zeta values, J. Number Theory, 132, 2, 314-323 (2012) · Zbl 1229.11119
[33] Tanny, S. M., On some numbers related to the Bell numbers, Canad. Math. Bull., 17, 733-738 (1975) · Zbl 0304.10007
[34] Zagier, D., Values of zeta functions and their applications, (First European Congress of Mathematics, vol. II. First European Congress of Mathematics, vol. II, Paris, 1992. First European Congress of Mathematics, vol. II. First European Congress of Mathematics, vol. II, Paris, 1992, Progr. Math., vol. 120 (1994), Birkhäuser: Birkhäuser Paris), 497-512 · Zbl 0822.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.