×

A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials. (English) Zbl 1102.11048

The authors derive a multiplication theorem for the Lerch zeta function \(\phi(s,a,\xi)\). They also deduce explicit representations for the Bernoulli and Euler polynomials in terms of two arrays of polynomials related to the classical Stirling and Eulerian numbers. As consequences, they give explicit formulas for some special values of the Bernoulli and Euler polynomials.

MSC:

11M35 Hurwitz and Lerch zeta functions
11B68 Bernoulli and Euler numbers and polynomials
11B73 Bell and Stirling numbers
Full Text: DOI

References:

[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math., 1, 161-167 (1951) · Zbl 0043.07103
[2] Apostol, T. M., Introduction to Analytic Number Theory (1976), Springer: Springer New York · Zbl 0335.10001
[3] Butzer, P. L.; Schmidt, M.; Stark, E. L.; Vogt, L., Central factorial numbers: their main properties and some applications, Numer. Funct. Anal. Optim., 10, 419-488 (1989) · Zbl 0659.10012
[4] Carlitz, L., Eulerian numbers and polynomials, Math. Mag., 32, 247-260 (1959) · Zbl 0092.06601
[5] Carlitz, L.; Roselle, D. P.; Scoville, R. A., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1, 350-374 (1966) · Zbl 0304.05002
[6] Cvijović, D.; Klinowski, J., New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc., 123, 1527-1535 (1995) · Zbl 0827.11012
[7] Dilcher, K., Multiplikationstheoreme für die Bernoullischen Polynome und explizite Darstellungen der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg, 59, 143-156 (1989) · Zbl 0712.11015
[8] Chang, C. H.; Ha, C. W., Eulerian polynomials and related explicit formulas, Fibonacci Quart., 40, 399-404 (2002) · Zbl 1038.11012
[9] Gould, H. W., Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79, 44-51 (1972) · Zbl 0227.10010
[10] Koutras, M. V., Eulerian numbers associated with sequences of polynomials, Fibonacci Quart., 32, 44-57 (1994) · Zbl 0791.05002
[11] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics (1966), Springer: Springer New York · Zbl 0143.08502
[12] Riordan, J., Combinatorial Identities (1979), Krieger: Krieger New York
[13] Srivastava, H. M., Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc., 129, 77-84 (2000) · Zbl 0978.11004
[14] Todorov, P. G., On the theory of the Bernoulli polynomials and numbers, J. Math. Anal. Appl., 104, 309-350 (1984) · Zbl 0552.10007
[15] Todorov, P. G., Explicit formulas for the Bernoulli and Euler polynomials and numbers, Abh. Math. Sem. Univ. Hamburg, 61, 175-180 (1991) · Zbl 0748.11016
[16] Wang, K., Exponential sums of Lerch’s zeta functions, Proc. Amer. Math. Soc., 95, 11-15 (1985) · Zbl 0573.10011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.