×

Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system. (English) Zbl 1235.76182

The authors deal with global weak solutions of a non-conservative viscous compressible two-phase model in one space dimension. The work extends in some sense a previous work [D. Bresch et al., Arch. Ration. Mech. Anal. 196, No. 2, 599–629 (2010; Zbl 1193.35146)], which provides the global existence of weak solutions in the multi-dimensional framework with \(1<\gamma_{\pm}<6\) assuming non-zero surface tension. In this study, one strongly improves the results by taking advantage of the one space dimension. More precisely, one obtains global existence of weak solutions without using capillarity terms and for pressure laws with the same range of coefficients as the degenerate barotropic mono-fluid system, namely \(\gamma_{\pm}>1\). Then one proves that any possible vacuum state has to vanish within finite time after which densities are always away from vacuum.

MSC:

76T99 Multiphase and multicomponent flows
35Q35 PDEs in connection with fluid mechanics

Citations:

Zbl 1193.35146
Full Text: DOI

References:

[1] Berthon, C., Coquel, F., Le Floch, Ph.: Why many theories of shock waves are necessary: kinetic relations for non-conservative systems. Submitted, 2010
[2] Bresch D., Desjardins B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1-2), 211–223 (2003) · Zbl 1037.76012
[3] Bresch D., Desjardins B., Lin C.-K.: On some compressible fluid models Korteweg, lubrication, and shallow water systems. Comm. Part. Diff. Equ. 28(3–4), 843–868 (2003) · Zbl 1106.76436 · doi:10.1081/PDE-120020499
[4] Bresch D., Desjardins B., Ghidaglia J.-M., Grenier E.: Global weak solution to a generic two-fluid model. Arch. Rat. Mech. Anal. 196, 599–629 (2010) · Zbl 1193.35146 · doi:10.1007/s00205-009-0261-6
[5] Bresch, D., Huang, X., Li, J.: On a spherically symmetric bi-phase compressible model. In preparation, 2011
[6] Bresch D., Renardy M.: Well-posedness of two-layer shallow water flow between two horizontal rigid plates. Nonlinearity 29, 1081–1088 (2011) · Zbl 1216.35095 · doi:10.1088/0951-7715/24/4/004
[7] Chanteperdrix, G., Villedieu, P., Vila, J.-P.: A compressible model for separated two-phase flows computations. In: ASME Fluids Engineering Division Summer Meeting. ASME, Montreal, Canada, July 2002
[8] Chen G.Q., Perepelitsa M.: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible flow. Comm. Pure Appl. Math. 63(11), 1469–1504 (2010) · Zbl 1205.35188 · doi:10.1002/cpa.20332
[9] Dellacherie S.: Relaxation schemes for the multicomponent Euler system. M2AN 37(6), 909–936 (2003) · Zbl 1070.76037 · doi:10.1051/m2an:2003061
[10] Drew, D.A., Passman, S.L.: Theory of multicomponent fluids. Applied Mathematical Sciences, 135. Berlin-Heidelberg-New York: Springer-Verlag, 1998 · Zbl 0919.76003
[11] Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford Science, Oxford (2004) · Zbl 1080.76001
[12] Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001) · Zbl 0997.35043 · doi:10.1007/PL00000976
[13] Huang, F., Li, M., Wang, Y.: Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations. Submited, 2010
[14] Guo Z., Jiu Q., Xin Z.: Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 39, 1402–1427 (2008) · Zbl 1151.35071 · doi:10.1137/070680333
[15] Ishii M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975) · Zbl 0325.76135
[16] Jiang S., Xin Z., Zhang P.: Global weak solutions to 1D compressible isentropy Navier-Stokes with density-dependent viscosity. Meth. and Appl. of Anal. 12(3), 239–252 (2005) · Zbl 1110.35058
[17] Keyfitz, B.L.: Mathematical properties of nonhyperbolic models for incompressible two-phase ow. In: Michaelides, E.E. (ed.) Proceedings of the Fourth International Conference on Multiphase Flow. New Orleans (CD ROM), Tulane University, 2001
[18] Keyfitz B.L., Sanders R., Sever M.: Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Disc. Cont. Dyn. Syst. B 3, 541–563 (2003) · Zbl 1055.35074 · doi:10.3934/dcdsb.2003.3.541
[19] Keyfitz B.L., Sever M., Zhang F.: Viscous singular shock structure for a nonhyperbolic two-Fluid model. Nonlinearity 17(5), 1731–1747 (2009) · Zbl 1077.35091 · doi:10.1088/0951-7715/17/5/010
[20] Li H., Li J., Xin Z.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Commun. Math. Phys. 281(2), 401–444 (2008) · Zbl 1173.35099 · doi:10.1007/s00220-008-0495-4
[21] Lions P.L.: Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models. Oxford Science, Oxford (1998)
[22] Mellet A., Vasseur A.: On the barotropic compressible Navier-Stokes equation. Comm. Part. Diff. Eqs. 32(3), 431–452 (2007) · Zbl 1149.35070 · doi:10.1080/03605300600857079
[23] Saurel R., Abgrall R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999) · Zbl 0937.76053 · doi:10.1006/jcph.1999.6187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.