×

On generalized Stokes’ and Brinkman’s equations with a pressure- and shear-dependent viscosity and drag coefficient. (English) Zbl 1330.35031

Summary: We study generalizations of the Darcy, Forchheimer, Brinkman and Stokes problem in which the viscosity and the drag coefficient depend on the shear rate and the pressure. We focus on existence of weak solutions to the problem, with the chief aim to capture as wide a group of viscosities and drag coefficients as mathematically feasible and to provide a theory that holds under minimal, not very restrictive conditions. Even in the case of generalized Stokes system, the established result answers a question on existence of weak solutions that has been open so far.

MSC:

35B35 Stability in context of PDEs
76S05 Flows in porous media; filtration; seepage
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Darcy, H., Les Fontaines Publiques de la ville de Dijon (1856), V. Dalmont
[2] Brinkman, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., A1, 27-34 (1947) · Zbl 0041.54204
[3] Brinkman, H. C., On the permeability of the media consisting of closely packed porous particles, Appl. Sci. Res., A1, 81-86 (1947)
[4] Srinivasan, S.; Bonito, A.; Rajagopal, K. R., Flow of a fluid through porous solid due to high pressure gradients, J. Porous Media, 16, 3, 193-203 (2013)
[5] Andrade, E. C., Viscosity of liquids, Nature, 125, 3148, 309-310 (1930) · JFM 56.1264.10
[6] Bridgman, P. W., (The Physics of High Pressure. The Physics of High Pressure, Dover Books on Physics and Mathematical Physics (1970), Dover Publ.)
[7] Schaschke, C. J.; Allio, S.; Holmberg, E., Viscosity measurement of vegetable oil at high pressure, Food Bioprod. Process., 84, C3, 173-178 (2006)
[8] Paton, J. M.; Schaschke, C. J., Viscosity measurement of biodiesel at high pressure with a falling sinker viscometer, Chem. Eng. Res. Des., 87, 11A, 1520-1526 (2009)
[9] Kannan, K.; Rajagopal, K. R., Flow through porous media due to high pressure gradients, Appl. Math. Comput., 199, 2, 748-759 (2008) · Zbl 1228.76161
[10] Subramanian, S. C.; Rajagopal, K. R., A note on the flow through porous solids at high pressures, Comput. Math. Appl., 53, 2, 260-275 (2007) · Zbl 1129.76054
[11] Bird, R. B.; Armstrong, R. C.; Hassager, O.; Curtiss, C. F., (Dynamics of Polymeric Liquids. Dynamics of Polymeric Liquids, Board of Advisors, Engineering, vols. 1-2 (1977), Wiley)
[12] Málek, J.; Rajagopal, K. R.; Růžička, M., Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci., 5, 6, 789-812 (1995) · Zbl 0838.76005
[13] Srinivasan, S.; Rajagopal, K. R., A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations, Int. J. Non-Linear Mech., 58, 162-166 (2014)
[14] Rajagopal, K. R.; Tao, L., (Mechanics of Mixtures. Mechanics of Mixtures, Series on Advances in Mathematics for Applied Sciences, vol. 35 (1995), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ) · Zbl 0941.74500
[15] Samohýl, I., (Thermodynamics of Irreversible Processes in Fluid Mixtures. Approached by Rational Thermodynamics. Thermodynamics of Irreversible Processes in Fluid Mixtures. Approached by Rational Thermodynamics, Teubner-Texte zur Physik, vol. 12 (1987), BSB B. G. Teubner Verlagsgesellschaft: BSB B. G. Teubner Verlagsgesellschaft Leipzig), With German, French, Spanish and Russian summaries · Zbl 0665.76002
[16] Truesdell, C., Sulle basi della termomeccanica. I, II, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 22, 33-38 (1957), 158-166 · Zbl 0098.21002
[17] Rajagopal, K. R., On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. Models Methods Appl. Sci., 17, 2, 215-252 (2007) · Zbl 1123.76066
[18] Forchheimer, P., Wasserbewegung durch Boden, Z. Ver. Dtsch. Ing., 45, 1782-1788 (1901)
[19] Barus, C., Isotherms, isopiestics and isometrics relative to viscosity, Am. J. Sci., 45, 3, 87-96 (1893)
[20] Schwedoff, T., Recherches experimentales sur la cohesion des liquides. I. Rigidité des liquides, J. Phys., 8, 341-359 (1889) · JFM 21.1059.01
[21] Schwedoff, T., Recherches experimentales sur la cohesion des liquides. II. Rigidité des liquides, J. Phys., 9, 34-46 (1890)
[22] Bulíček, M.; Gwiazda, P.; Málek, J.; Świerczewska-Gwiazda, A., On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44, 4, 2756-2801 (2012) · Zbl 1256.35074
[23] Málek, J.; Nečas, J.; Rajagopal, K. R., Global analysis of the flows of fluids with pressure-dependent viscosities, Arch. Ration. Mech. Anal., 165, 3, 243-269 (2002) · Zbl 1022.76011
[24] Schaeffer, D. G., Instability in the evolution equations describing incompressible granular flow, J. Differential Equations, 66, 1, 19-50 (1987) · Zbl 0647.35037
[25] Nakshatrala, K. B.; Rajagopal, K. R., A numerical study of fluids with pressure-dependent viscosity flowing through a rigid porous medium, Internat. J. Numer. Methods Fluids, 67, 3, 342-368 (2011) · Zbl 1308.76273
[26] Málek, J.; Nečas, J.; Rajagopal, K. R., Global existence of solutions for flows of fluids with pressure and shear dependent viscosities, Appl. Math. Lett., 15, 8, 961-967 (2002) · Zbl 1062.76011
[27] Bulíček, M.; Fišerová, V., Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index, Z. Anal. Anwend., 28, 3, 349-371 (2009) · Zbl 1198.35174
[28] Franta, M.; Málek, J.; Rajagopal, K. R., On steady flows of fluids with pressure- and shear-dependent viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 2055, 651-670 (2005) · Zbl 1145.76311
[29] Acerbi, E.; Fusco, N., An approximation lemma for \(W^{1, p}\) functions, (Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986). Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), Oxford Sci. Publ. (1988), Oxford Univ. Press: Oxford Univ. Press New York), 1-5 · Zbl 0644.46026
[30] Diening, L.; Málek, J.; Steinhauer, M., On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications, ESAIM Control Optim. Calc. Var., 14, 2, 211-232 (2008) · Zbl 1143.35037
[31] Diening, L.; Růžička, M.; Wolf, J., Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9, 1, 1-46 (2010) · Zbl 1253.76017
[32] Breit, D.; Diening, L.; Schwarzacher, S., Solenoidal Lipschitz truncation for parabolic PDEs, Math. Models Methods Appl. Sci., 23, 14, 2671-2700 (2013) · Zbl 1309.76024
[33] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19, 6, 581-597 (1992) · Zbl 0783.35020
[36] Bulíček, M.; Málek, J.; Rajagopal, K. R., Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56, 1, 51-85 (2007) · Zbl 1129.35055
[37] Brooks, J. K.; Chacon, R. V., Continuity and compactness of measures, Adv. Math., 37, 1, 16-26 (1980) · Zbl 0463.28003
[38] Murat, F., Compacité par compensation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 5, 3, 489-507 (1978) · Zbl 0399.46022
[39] Tartar, L., Compensated compactness and applications to partial differential equations, (Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39 (1979), Pitman: Pitman Boston, Mass., London), 136-212 · Zbl 0437.35004
[40] Kalantarov, V.; Zelik, S., Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11, 5, 2037-2054 (2012) · Zbl 1264.35054
[41] Aulisa, E.; Bloshanskaya, L.; Hoang, L.; Ibragimov, A., Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys., 50, 10, 103102 (2009), 44 pp · Zbl 1236.76067
[42] Bulíček, M.; Málek, J.; Rajagopal, K. R., Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries, SIAM J. Math. Anal., 41, 2, 665-707 (2009) · Zbl 1195.35239
[43] Lanzendörfer, M.; Stebel, J., On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities, Appl. Math., 56, 3, 265-285 (2011) · Zbl 1224.35347
[44] Galdi, G. P., (An Introduction to the Mathematical Theory of the Navier-Stokes Equations. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics (2011), Springer: Springer New York), Steady-state problems · Zbl 1245.35002
[45] Feireisl, E.; Novotný, A., (Singular Limits in Thermodynamics of Viscous Fluids. Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics (2009), Birkhäuser Verlag: Birkhäuser Verlag Basel) · Zbl 1176.35126
[46] Ball, J. M.; Murat, F., Remarks on Chacon’s biting lemma, Proc. Amer. Math. Soc., 107, 3, 655-663 (1989) · Zbl 0678.46023
[47] Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (1969), Dunod · Zbl 0189.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.