×

A model for rubberlike elasticity up to failure. (English) Zbl 1329.74044

Summary: Multi-axial elastic potentials for isotropic, incompressible elastomeric solids are constructed based solely on uniaxial potentials by means of direct, explicit procedures. Results are presented for the purpose of meeting the following three requirements: (i) the strain-stiffening effect is represented with rapidly growing stress at certain strain limits, (ii) the strain energy never grows to infinity but is always bounded, and (iii) the stress is also bounded and asymptotically tends to vanish with increasing strain up to failure. As such, a realistic simulation of rubberlike elasticity with the strain-stiffening effect up to failure is proposed for the first time. Numerical examples show good agreement with a number of test data.

MSC:

74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] Anand L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78-82 (1979) · Zbl 0405.73032 · doi:10.1115/1.3424532
[2] Anand L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293-304 (1986) · doi:10.1016/0022-5096(86)90021-9
[3] Aron M.: On certain deformation classes of compressible Hencky materials. Math. Mech. Solids 19, 467-478 (2006) · Zbl 1141.74013
[4] Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389-412 (1993) · Zbl 1355.74020 · doi:10.1016/0022-5096(93)90013-6
[5] Beatty M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65-86 (2003) · Zbl 1073.74013 · doi:10.1023/B:ELAS.0000005553.38563.91
[6] Beatty M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375-387 (2008) · Zbl 1175.74015 · doi:10.1177/1081286507076405
[7] Boyce M.C: Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69, 781-785 (1996) · doi:10.5254/1.3538401
[8] Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504-523 (2003) · doi:10.5254/1.3547602
[9] Criscione J.C., Humphrey J.D., Douglas A.S., Hunter W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445-2465 (2000) · Zbl 0983.74012 · doi:10.1016/S0022-5096(00)00023-5
[10] Diani J., Gilormini P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids 53, 2579-2596 (2005) · Zbl 1176.74025 · doi:10.1016/j.jmps.2005.04.011
[11] Drozdov A.D., Gottlieb M.: Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mech. 183, 231-252 (2006) · Zbl 1158.74316 · doi:10.1007/s00707-005-0292-5
[12] Edwards S.F., Vilgis T.A.: The tube model theory of rubber elasticity. Rep. Prog. Phys. 51, 243-297 (1988) · doi:10.1088/0034-4885/51/2/003
[13] Fitzjerald S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111-5115 (1980) · doi:10.1063/1.327428
[14] Fried E.: An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber elasticity. J. Mech. Phys. Solids 50, 571-582 (2002) · Zbl 1002.74012 · doi:10.1016/S0022-5096(01)00086-2
[15] Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59-61 (1996) · doi:10.5254/1.3538357
[16] Gent A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271-275 (2005) · doi:10.1122/1.1835343
[17] Heinrich G., Kaliske M.: Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput. Theor. Polym. Sci. 7, 227-241 (1997) · doi:10.1016/S1089-3156(98)00010-5
[18] Heinrich G., Straube E., Helmis G.: Rubber elasticity of polymer networks: theories. Adv. Polym. Sci. 85, 33-87 (1988) · doi:10.1007/BFb0024050
[19] Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A 314, 457-472 (1970) · Zbl 0201.26601 · doi:10.1098/rspa.1970.0018
[20] Horgan C.O., Murphy J.G.: Limiting chain extensibility constitutive models of Valanis-Landel type. J. Elast. 86, 101-111 (2007) · Zbl 1106.74014 · doi:10.1007/s10659-006-9085-x
[21] Horgan C.O., Murphy J.G.: A generalization of Hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater. 41, 943-950 (2009) · doi:10.1016/j.mechmat.2009.03.001
[22] Horgan C.O., Saccomandi G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167-176 (2002) · Zbl 1073.74007 · doi:10.1023/A:1026029111723
[23] Horgan C.O., Saccomandi G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127-1146 (2003) · Zbl 1049.74019 · doi:10.1016/S0022-5096(02)00144-8
[24] Horgan C.O., Saccomandi G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 1-18 (2006) · doi:10.5254/1.3547924
[25] Jones D.F., Treloar L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D 8, 1285-1304 (1975) · doi:10.1088/0022-3727/8/11/007
[26] Kaliske M., Heinrich G.: An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72, 602-632 (1998) · doi:10.5254/1.3538822
[27] Lahellec N., Mazerolle F., Michel J.C.: Second-order estimate of the macro-scopic behavior of periodic hyperelastic composites: theory and experimental validation. J. Mech. Phys. Solids 52, 27-49 (2004) · Zbl 1074.74048 · doi:10.1016/S0022-5096(03)00104-2
[28] Lopez-Pamies O.: A new I1-based hyperelastic model for rubber elastic materials. C. R. Mec. 338, 3-11 (2010) · Zbl 1377.74005 · doi:10.1016/j.crme.2009.12.007
[29] Lurie A.I.: Nonlinear Theory of Elasticity. Elsevier Science Publishers B.V., Netherlands (1990) · Zbl 0715.73017
[30] Miehe C., Göktepe S., Lulei F.: A micro-macro approach to rubberlike materials-part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617-2660 (2004) · Zbl 1091.74008 · doi:10.1016/j.jmps.2004.03.011
[31] Murphy J.G.: Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids 11, 629-641 (2006) · Zbl 1143.74007 · doi:10.1177/1081286506052341
[32] Ogden R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984) · Zbl 0541.73044
[33] Ogden R.W., Saccomandi G., Sgura I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749-768 (2006) · Zbl 1149.74312 · doi:10.1098/rspa.2005.1592
[34] Saccomandi, G., Ogden, R.W.: Mechanics and Thermomechanics of Rubberlike Solids. CISM Couses and Lectures No. 452, Springer, Wien (2004) · Zbl 0405.73032
[35] Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975) · Zbl 0347.73042
[36] Vahapoglu V., Karadenitz S.: Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930-2003). Rubber Chem. Technol. 79, 489-499 (2005) · doi:10.5254/1.3547947
[37] Xiao H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1-52 (2005) · doi:10.1163/1573611054455148
[38] Xiao H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta Mech. 223, 2039-2063 (2012) · Zbl 1356.74007 · doi:10.1007/s00707-012-0684-2
[39] Xiao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. doi:10.1007/s00707-014-1176-3 (2014) · Zbl 1323.74016
[40] Xiao H., Bruhns O.T., Meyers A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21-33 (2004) · Zbl 1063.74014 · doi:10.1007/s00707-004-0074-5
[41] Xiao H., Chen L.S.: Henckys logarithmic strain measure and dual stress-strain and strain-stress relations in isotropic finite hyper-elasticity. Int. J. Solids Struct. 40, 1455-1463 (2003) · Zbl 1032.74517 · doi:10.1016/S0020-7683(02)00653-4
[42] Zhang Y.Y., Li H., Wang X.M., Yin Z.N., Xiao H.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Contin. Mech. Thermodyn. 26, 207-220 (2014) · Zbl 1343.74051 · doi:10.1007/s00161-013-0297-6
[43] Zuniga A.E.: A non-Gaussian network model for rubber elasticity. Polymer 47, 907-914 (2006) · doi:10.1016/j.polymer.2005.11.078
[44] Zuniga A.E., Beatty M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265-2294 (2003) · Zbl 1211.74015 · doi:10.1016/S0020-7225(02)00140-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.