×

An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber elasticity. (English) Zbl 1002.74012

J. Mech. Phys. Solids 50, No. 3, 571-582 (2002); errata ibid. 50, No. 10, 2235 (2002).
Summary: By relaxing the assumption that end-to-end vectors of molecules transform as macroscopic material line elements, we arrive at a generalization of molecular-statistical theory of rubber elasticity. This generalization includes as special cases continuum-mechanical theories proposed by Mooney and by Rivlin and Saunders as improvements upon the classical neo-Hookean theory.

MSC:

74B20 Nonlinear elasticity
74A25 Molecular, statistical, and kinetic theories in solid mechanics
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Born, M., Dynamik der Kristallgitter. (1915), Teubner: Teubner Berlin · JFM 45.1043.01
[2] Criscione, J. C.; Humphrey, J. D.; Douglas, A. S.; Hunter, W. C., An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids, 48, 2445-2465 (2000) · Zbl 0983.74012
[3] Ericksen, J. L., The Cauchy and Born hypotheses for crystals., (Gurtin, M. E., Phase Transformations and Materials Instabilities in Solids. (1984), Academic Press: Academic Press New York) · Zbl 0567.73112
[4] Ericksen, J. L., Equilibrium theory for X-ray observations of crystals, Arch. Ration. Mech. Anal., 139, 181-200 (1997) · Zbl 0910.73056
[5] Flory, P. J., Network structure and the elastic properties of vulcanized rubber, Chem. Rev., 35, 51-75 (1944)
[6] Flory, P. J., Statistical thermodynamics of random networks, Proc. Roy. Soc. London, A 351, 351-380 (1976)
[7] Gordon, R. J.; Schowalter, W. R., Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheol., 16, 79-97 (1972) · Zbl 0368.76006
[8] Guth, E.; Mark, J. E., Zur innermoleckularen Statistik, insbesondere bei Kettenmolekülen I, Monatsh. Chem., 65, 93-121 (1934)
[9] Heinrich, G.; Kaliske, M., Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity, Comput. Theor. Polym. Sci., 7, 227-241 (1997)
[10] James, H. M., Statistical properties of networks of flexible chains, J. Chem. Phys., 15, 651-668 (1947)
[11] James, H. M.; Guth, E., Theoretical stress-strain curve for rubberlike materials, Phys. Rev., 59, 111 (1941)
[12] James, H. M.; Guth, E., Theory of the elastic properties of rubber, J. Chem. Phys., 11, 455-481 (1943)
[13] James, H. M.; Guth, E., Theory of the elasticity of rubber, J. Appl. Phys., 15, 294-303 (1944)
[14] Kuhn, W., Über die Gestalt fadenförmiger Moleküle in Lösungen, Kolloid Z., 68, 2-15 (1934)
[15] Kuhn, W., Beziehungen zwischen Molekl̈egröße, statischer Molecülgestalt und elastischen Eigenschaften hochpolymereer Stoffe, Kolloid Z., 76, 258-271 (1936)
[16] Kuhn, W., Molekülkonstellation und Kristallitorientierzung als Ursachen kautschukähnlincher Elastizität, Kolloid Z., 87, 3-12 (1938)
[17] Kuhn, W.; Grün, F., Statistical behavior of a single-chain molecule and its relation to the statistical behavior of many chain molecules, J. Polym. Sci., 1, 183-199 (1946)
[18] Lodge, A. S., Constitutive equations from molecular network theories for polymer solutions, Acta Rheol., 7, 379-392 (1968) · Zbl 0216.52002
[19] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 582-592 (1940) · JFM 66.1021.04
[20] Phan Thien, N.; Tanner, R. I., A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech., 2, 353-365 (1977) · Zbl 0361.76011
[21] Rivlin, R. S., Large elastic deformations of isotropic materials, I. Fundamental concepts, Philos. Trans. Roy. Soc. London A, 240, 459-490 (1948) · Zbl 0029.32605
[22] Rivlin, R. S., Large elastic deformations of isotropic materials, VII. Experiments on the deformation of rubber, Philos. Trans. Roy. Soc. London A, 243, 251-288 (1948) · Zbl 0042.42505
[23] Ronca, G.; Allegra, G., An approach to rubber elasticity with internal constraints, J. Chem. Phys., 63, 4990-4997 (1975)
[24] Treloar, L. R.G., The elasticity of a network of long-chain molecules. I, Trans. Faraday Soc., 39, 36-41 (1943)
[25] Treloar, L. R.G., The elasticity of a network of long-chain molecules. II., Trans. Faraday Soc., 39, 241-246 (1943)
[26] Treloar, L. R.G., Stress-strain data for vulcanized rubber under various types of deformation, Trans. Faraday Soc., 42, 59-70 (1944)
[27] Treloar, L. R.G., The elasticity of a network of long-chain molecules. III, Trans. Faraday Soc., 42, 83-94 (1946) · Zbl 0063.07846
[28] Truesdell, C.; Noll, W., The non-linear field theories of mechanics., (Flügge, S., Handbuch der Physik, Vol. III/3. (1965), Springer: Springer Berlin) · Zbl 0779.73004
[29] Wall, F. T., Statistical thermodynamics of rubber, J. Chem. Phys., 10, 132-134 (1942)
[30] Wall, F. T., Statistical thermodynamics of rubber. II, J. Chem. Phys., 10, 485-488 (1942)
[31] Wall, F. T., Statistical thermodynamics of rubber. III., J. Chem. Phys., 11, 527-530 (1943)
[32] Wall, F. T.; Flory, P. J., Statistical thermodynamics of rubber elasticity, J. Chem. Phys., 19, 1435-1439 (1951)
[33] Yamamoto, M., The visco-elastic properties of network structure I. General formalism, J. Phys. Soc. Japan, 11, 413-421 (1956)
[34] Zanzotto, G., On the material symmetry group of elastic crystals and the Born rule, Arch. Ration. Mech. Anal., 121, 1-36 (1992) · Zbl 0781.73005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.