×

Maxima of moving maxima of continuous functions. (English) Zbl 1329.60156

Summary: Maxima of moving maxima of continuous functions (CM3) are maxstable processes aimed at modelling extremes of continuous phenomena over time. They are defined as Smith and Weissman’s M4 processes with continuous functions rather than vectors. After standardization of the margins of the observed process into unit-Fréchet, CM3 processes can model the remaining spatio-temporal dependence structure. CM3 processes have the property of joint regular variation. The spectral processes from this class admit particularly simple expressions given here. Furthermore, depending on the speed with which the parameter functions tend toward zero, CM3 processes fulfill the finite-cluster condition and the strong mixing condition. Processes enjoying these three properties also enjoy a simple expression for their extremal index. Next a method to fit CM3 processes to data is investigated. The first step is to estimate the length of the temporal dependence. Then, by selecting a suitable number of blocks of extremes of this length, clustering algorithms are used to estimate the total number of different profiles. The parameter functions themselves are estimated thanks to the output of the partitioning algorithms. The full procedure only requires one parameter which is the range of variation allowed among the different profiles. The dissimilarity between the original CM3 and the estimated version is evaluated by means of the Hausdorff distance between the graphs of the parameter functions.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60G60 Random fields
62M40 Random fields; image analysis

References:

[1] Davis, R.A., Mikosch, T.: Extreme value theory for space-time processes with heavy-tailed distributions. Stoch. Process. Their Appl. 118(4), 560–584 (2008) · Zbl 1142.60040 · doi:10.1016/j.spa.2007.06.001
[2] de Haan, L., Ferreira, A.: Extreme Value Theory. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). An introduction
[3] Deheuvels, P.: Point processes and multivariate extreme values. J. Multivar. Anal. 13(2), 257–272 (1983) · Zbl 0519.60045 · doi:10.1016/0047-259X(83)90025-8
[4] Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Sringer, New York (1997)
[5] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009) · Zbl 1273.62005
[6] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York (1990). An introduction to cluster analysis, A Wiley-Interscience Publication · Zbl 1345.62009
[7] Ketchen, D.J. Jr., Shoo, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manage. J. 17(6), 441–458 (1996) · doi:10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
[8] Lleti, R. Jr., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S.: Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal. Chim. Acta 515, 87–100 (2004) · doi:10.1016/j.aca.2003.12.020
[9] Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979). Probability and Mathematical Statistics: A Series of Monographs and Textbooks
[10] Meinguet, T., Segers, J.: Regularly varying time series in Banach spaces. Submitted, arXiv:1001.3262 (2010) · Zbl 1387.60087
[11] Rousseuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 20, 53–65 (1987) · Zbl 0636.62059 · doi:10.1016/0377-0427(87)90125-7
[12] Seber, G.A.F.: Multivariate Observations. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1984) · Zbl 0627.62052
[13] Segers, J.: Approximate distributions of clusters of extremes. Stat. Probab. Lett. 74(4), 330–336 (2005) · Zbl 1095.62063 · doi:10.1016/j.spl.2005.04.054
[14] Segers, J.: Rare events, temporal dependence, and the extremal index. J. Appl. Probab. 43(2), 463–485 (2006) · Zbl 1103.60054 · doi:10.1239/jap/1152413735
[15] Smith, R.L.: Statistics of extremes, with applications in environment, insurance and finance. In: Finkenstadt, B., Rootzen, H. (eds.) Extreme Values in Finance, Telecommunications and the Environment, chapter 1, pp. 1–78. Chapman and Hall/CRC Press, London (2003)
[16] Smith, R.L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index. Dept. Stat. Oper. Res., Univ. North Carolina, Chapel Hill, NC (1996)
[17] Spath, H.: Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples, translated by J. Goldschmidt. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Halsted Press (1985)
[18] Süveges, M.: Statistical Analysis of Clusters of Extreme Events. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (2009)
[19] Süveges, M., Davison, A.C.: Model misspecification in peaks over threshold analysis. Ann. Appl. Stat. 4(1), 203–221 (2010) · Zbl 1189.62086 · doi:10.1214/09-AOAS292
[20] Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic, Orlando (2006) · Zbl 1093.68103
[21] van der Laan, M.J., Pollard, K.S., Bryan, J.: A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 73(8), 575–584 (2003) · Zbl 1054.62075 · doi:10.1080/0094965031000136012
[22] Ward, J.H. Jr.: Hierarchical grouping to optimize an objective function. J. Am. Statist. Assoc. 58, 236–244 (1963) · doi:10.1080/01621459.1963.10500845
[23] Zhang, Z.: The estimation of M4 processes with geometric moving patterns. Ann. Inst. Stat. Math. 60(1), 121–150 (2008) · Zbl 1184.62147 · doi:10.1007/s10463-006-0078-0
[24] Zhang, Z., Smith, R.L.: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41(4), 1113–1123 (2004) · Zbl 1122.60052 · doi:10.1239/jap/1101840556
[25] Zhang, Z., Smith, R.L.: On the estimation and application of max-stable processes. JSPI 140, 1135–1153 (2010) · Zbl 1181.62150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.