×

Rare events, temporal dependence, and the extremal index. (English) Zbl 1103.60054

Classical extreme value theory for stationary sequences \(X_1,X_2,\dots\) of random variables can be paraphrased to a large extent as the study of exceedances over a high threshold \(u_\alpha\). A special role within the description of the temporal dependence between such exceedances is played by the extremal index \(\theta\in[0,1]\): For every \(\tau\in(0,\infty)\) there exists a sequence of thresholds \(u_n\), \(n=1,2,\dots\), such that \(nP(X_1>u_n)\to\tau\) and \(P\left(\max_{1\leq i\leq n}X_i\leq u_n\right)\to\exp(-\theta\tau)\) as \(n\to\infty\). Parts of this theory can be generalized not only to random variables on an arbitrary state space hitting certain failure sets, but even to a triangular array of rare events on an abstract probability space. In the case of M4 (maximum of multivariate moving maxima) processes, the arguments take a simple and direct form.

MSC:

60G70 Extreme value theory; extremal stochastic processes
62G32 Statistics of extreme values; tail inference
Full Text: DOI

References:

[1] Barbour, A. D., Novak, S. Y. and Xia, A. (2002). Compound Poisson approximation for the distribution of extremes. Adv. Appl. Prob. 24 , 223–240. · Zbl 1005.60065 · doi:10.1239/aap/1019160958
[2] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications . John Wiley, New York. · Zbl 1070.62036 · doi:10.1002/0470012382
[3] De Haan, L. (1984). A spectral representation for max-stable processes. Ann. Prob. 12 , 1194–1204. · Zbl 0597.60050 · doi:10.1214/aop/1176993148
[4] Ferro, C. A. T. and Segers, J. (2003). Inference for clusters of extremes. J. R. Statist. Soc. B 65 , 545–556. JSTOR: · Zbl 1065.62091 · doi:10.1111/1467-9868.00401
[5] Hsing, T. (1989). Extreme value theory for multivariate stationary sequences. J. Multivariate Anal. 29 , 274–291. · Zbl 0679.62039 · doi:10.1016/0047-259X(89)90028-6
[6] Hsing, T., Hüsler, J. and Leadbetter, M. R. (1988). On the exceedance point process for a stationary sequence. Prob. Theory Relat. Fields 78 , 97–112. · Zbl 0619.60054 · doi:10.1007/BF00718038
[7] Hüsler, J. (1990). Multivariate extreme values in stationary random sequences. Stoch. Process. Appl. 35 , 99–108. · Zbl 0703.62027 · doi:10.1016/0304-4149(90)90125-C
[8] Hüsler, J. (1993). A note on exceedances and rare events of non-stationary sequences. J. Appl. Prob. 30 , 877–888. JSTOR: · Zbl 0787.60058 · doi:10.2307/3214519
[9] Hüsler, J. and Schmidt, M. (1996). A note on the point processes of rare events. J. Appl. Prob. 33 , 654–663. JSTOR: · Zbl 0870.60044 · doi:10.2307/3215347
[10] Leadbetter, M. R. (1974). On extreme values in stationary sequences. Z. Wahrscheinlichkeitsth. 28 , 289–303. · Zbl 0265.60019 · doi:10.1007/BF00532947
[11] Leadbetter, M. R. (1983). Extremes and local dependence of stationary sequences. Z. Wahrscheinlichkeitsth. 65 , 291–306. · Zbl 0506.60030 · doi:10.1007/BF00532484
[12] Loynes, R. M. (1965). Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36 , 993–999. · Zbl 0178.53201 · doi:10.1214/aoms/1177700071
[13] Nandagopalan, S. (1994). On the multivariate extremal index. J. Res. Nat. Inst. Stand. Technol. 99 , 543–550. · Zbl 0881.60050
[14] Novak, S. Y. (2002). Multilevel clustering of extremes. Stoch. Process. Appl. 97 , 59–75. · Zbl 1060.60049 · doi:10.1016/S0304-4149(01)00123-5
[15] O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences. Ann. Prob. 15 , 281–291. · Zbl 0619.60025 · doi:10.1214/aop/1176992270
[16] Perfekt, R. (1997). Extreme value theory for a class of Markov chains with values in \(\R^d\). Adv. Appl. Prob. 29 ,138–164. JSTOR: · Zbl 0882.60049 · doi:10.2307/1427864
[17] Smith, R. L. and Weissman, I. (1996). Characterization and estimation of the multivariate extremal index. Tech. Rep., University of North Carolina. Available at www.unc.edu/depts/statistics/postscript/rs/extremal.ps.
[18] Zhang, Z. (2002). Multivariate extremes, max-stable process estimation and dynamic financial modeling. Doctoral Thesis, University of North Carolina.
[19] Zhang, Z. and Smith, R. L. (2004). The behavior of multivariate maxima of moving maxima processes. J. Appl. Prob. 41 , 1113–1123. · Zbl 1122.60052 · doi:10.1239/jap/1101840556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.