×

Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. (English) Zbl 1327.92066

Summary: In this paper, a general viral model with virus-driven proliferation of target cells is studied. Global stability results are established by employing the Lyapunov method and a geometric approach developed by Y. Li and J. S. Muldowney [J. Differ. Equations 106, No. 1, 27–39 (1993; Zbl 0786.34033)]. It is shown that under certain conditions, the model exhibits a global threshold dynamics, while if these conditions are not met, then backward bifurcation and bistability are possible. An example is presented to provide some insights on how the virus-driven proliferation of target cells influences the virus dynamics and the drug therapy strategies.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations

Citations:

Zbl 0786.34033
Full Text: DOI

References:

[1] N. P. Bhatia, <em>Dynamical Systems: Stability Theory and Applications</em>,, Lecture Notes in Math. 35 (1967) · Zbl 0155.42201
[2] G. Butler, Persistence in dynamical Systems,, J. Differential Equations, 63, 255 (1986) · Zbl 0603.58033 · doi:10.1016/0022-0396(86)90049-5
[3] W. A. Coppel, <em>Stability and Asymptotic Behavior of Differential Equations</em>,, Health (1995) · Zbl 0154.09301
[4] R. J. De Boer, Target cell limited and immune control models of HIV infection: a comparison,, J. Theor. Biol., 190, 201 (1998)
[5] P. De Leenheer, Virus dynamics: a global analysis,, SIAM J. Appl. Math., 63, 1313 (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[6] N. M. Dixit, Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokineticsand intracellular delay,, J. Theor. Biol., 226, 95 (2004) · Zbl 1439.92108 · doi:10.1016/j.jtbi.2003.09.002
[7] H. I. Freedman, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Differen. Equat., 6, 583 (1994) · Zbl 0811.34033 · doi:10.1007/BF02218848
[8] J. K. Hale, <em>Introduction to Functional Differential Equations</em>,, Springer-Verlag (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[9] J. M. Heffernan, Monte Carlo estimates of natural variation in HIV infection,, J. Theor. Biol., 236, 137 (2005) · Zbl 1442.92167 · doi:10.1016/j.jtbi.2005.03.002
[10] T. B. Kepler, Drug concentration heterogeneity facilitates the evolution of drug resistance,, Proc. Natl. Acad. Sci. USA, 95, 11514 (1998) · Zbl 0919.92023 · doi:10.1073/pnas.95.20.11514
[11] D. Kirschner, Using mathematics to understand HIV immune dynamics,, Notices of the AMS, 43, 191 (1996) · Zbl 1044.92503
[12] A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66, 879 (2004) · Zbl 1334.92409 · doi:10.1016/j.bulm.2004.02.001
[13] J. P. LaSalle, <em>The Stability of Dynamical Systems</em>,, Regional Conference Series in Applied Mathematics (1976) · Zbl 0364.93002
[14] M. Y. Li, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160, 191 (1999) · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[15] M. Y. Li, A geometric approach to the global-stability problems,, SIAM J. Math. Anal., 27, 1070 (1996) · Zbl 0873.34041 · doi:10.1137/S0036141094266449
[16] Y. Li, On Bendixson’s criterion,, J. Differential Equations, 106, 27 (1993) · Zbl 0786.34033 · doi:10.1006/jdeq.1993.1097
[17] M. Y. Li, Impact of intercellar delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70, 2434 (2010) · Zbl 1209.92037 · doi:10.1137/090779322
[18] M. Y. Li, Joint effects of mitosis and intracellular delay on viral dynamics: two-parameter bifurcation analysis,, J. Math. Biol., 64, 1005 (2012) · Zbl 1303.92060 · doi:10.1007/s00285-011-0436-2
[19] R. H. Martin Jr., Logarithmic norms and projections applied to linear differential systems,, J. Math. Anal. Appl., 45, 432 (1974) · Zbl 0293.34018 · doi:10.1016/0022-247X(74)90084-5
[20] J. S. Muldowney, Compound matrices and ordinary differential equations,, Rocky Mountain J. Math., 20, 857 (1990) · Zbl 0725.34049 · doi:10.1216/rmjm/1181073047
[21] A. Murase, Stability analysis of pathogen-immune interaction dynamics,, J. Math. Biol., 51, 247 (2005) · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[22] P. W. Nelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters,, Journal of Aids, 26, 405 (2001)
[23] M. A. Nowak, Population dynamics of immune responses to persistent viruses,, Science, 272, 74 (1996) · doi:10.1126/science.272.5258.74
[24] M. A. Nowak, <em>Virus Dynamics</em>,, Cambridge University Press (2000) · Zbl 1101.92028
[25] A. S. Perelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41, 3 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[26] A. S. Perelson, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 1582 (1996) · doi:10.1126/science.271.5255.1582
[27] R. Qesmi, Influence of backward bifurcation in a model of hepatitis B and C viruses,, Math. Biosci., 224, 118 (2010) · Zbl 1188.92017 · doi:10.1016/j.mbs.2010.01.002
[28] T. Revilla, Fighting a virus with a virus: A dynamical model for HIV-1 therapy,, Math. Biosci., 185, 191 (2003) · Zbl 1021.92015 · doi:10.1016/S0025-5564(03)00091-9
[29] H. Shu, Role of CD \(4^+\) T-cell proliferation in HIV infection under antiretroviral therapy,, J. Math. Anal. Appl., 394, 529 (2012) · Zbl 1275.92033 · doi:10.1016/j.jmaa.2012.05.027
[30] H. L. Smith, <em>Monotone Dynamical Systems</em>,, AMS (1995)
[31] P. van den Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180, 29 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[32] P. Waltman, A brief survey of persistence in dynamical systems,, in Delay Differential Equations and Dynamical Systems (eds. S. Busenberg, 1475, 31 (1991) · Zbl 0756.34054 · doi:10.1007/BFb0083477
[33] L. Wang, HIV infection and CD \(4^+\) T cell dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 6, 1417 (2006) · Zbl 1123.92033 · doi:10.3934/dcdsb.2006.6.1417
[34] L. Wang, Mathematical analysis of the global dynamics of a model for HIV infection of CD \(4^+\) T cells,, Math. Biosci., 200, 44 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[35] Y. Yan, Global stability of a five-dimensional model with immune responses and delay,, Discrete Contin. Dyn. Syst. Ser. B, 17, 401 (2012) · Zbl 1233.92061 · doi:10.3934/dcdsb.2012.17.401
[36] H. Zhu, Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. Ser. B, 12, 511 (2009) · Zbl 1169.92033 · doi:10.3934/dcdsb.2009.12.511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.