×

Monte Carlo estimates of natural variation in HIV infection. (English) Zbl 1442.92167

Summary: We describe a Monte Carlo simulation of the within-host dynamics of human immunodeficiency virus 1 (HIV-1). The simulation proceeds at the level of individual T-cells and virions in a small volume of plasma, thus capturing the inherent stochasticity in viral replication, mutation and T-cell infection. When cell lifetimes are distributed exponentially in the Monte Carlo approach, our simulation results are in perfect agreement with the predictions of the corresponding systems of differential equations from the literature. The Monte Carlo model, however, uniquely allows us to estimate the natural variability in important parameters such as the T-cell count, viral load, and the basic reproductive ratio, in both the presence and absence of drug therapy. The simulation also yields the probability that an infection will not become established after exposure to a viral inoculum of a given size. Finally, we extend the Monte Carlo approach to include distributions of cell lifetimes that are less-dispersed than exponential.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
65C05 Monte Carlo methods
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Epidemiology parameters of HIV transmission, Nature, 333, 514 (1988)
[2] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[3] Barth-Jones, D.C., Adams, A.L., Koopman, J.S., 2000. Monte Carlo simulations experiments for analysis of HIV vaccine effects and vaccine trial design. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (Eds.), Proceedings of the 2000 Winter Simulation Conference, 1985-1994.
[4] Covert, D. J.; Kirschner, D., Revisiting early models of the host-pathogen interactions in HIV infection, Comment Theor. Biol., 5, 6, 383-411 (2000)
[5] da Silva, J., Hughes, A., 2002. Monte Carlo simulation of HIV-1 evolutions in response to selection by antibodies. IPDPS 2002.
[6] Deeks, S. G.; Coleman, R. L.; White, R.; Pachl, C.; Schambelan, M.; Chernoff, D. N.; Feinberg, M. B., Variance of plasma human immunodeficiency virus type 1 RNA levels measured by branched DNA within and between days, J. Infect. Dis., 176, 514-517 (1997)
[7] Drusano, G. L.; Argenio, D. Z.; Preston, S. L.; Barone, C.; Symonds, W.; LaFon, S.; Rogers, M.; Prince, W.; Bye, A.; Bilello, J. A., Use of drug effect interaction modeling with Monte Carlo simulation to examine the impact of dosing interval on the projected antiviral activity of the combination of Abacavir and Amprenavir, Antimicrob. Agents Chemother., 44, 6, 1655-1659 (2000)
[8] Gallop, R. J.; Mode, C. J.; Sleeman, C. K., Determination of threshold conditions for a non-linear stochastic partnership model for heterosexually transmitted diseases with stages, Math. Biosci., 177 & 178, 287-315 (2002) · Zbl 0999.92031
[9] Haase, A. T.; Henry, K.; Zupancic, M.; Sedgewick, G.; Faust, R. A.; Melroe, H.; Cavert, W.; Gebhard, K.; Staskus, K.; Zhang, Z-Q.; Dailey, P. J.; Balfour, H. H.; Erice, A.; Perelson, A. S., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274, 985-989 (1996)
[10] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 6510, 123-126 (1995)
[11] Huang, Y.; Rosenkranz, S. L.; Wu, H., Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity, Math. Biosci., 184, 165-186 (2003) · Zbl 1030.92016
[12] Hughes, M. D.; Stein, D. S.; Gundacker, H. M.; Valentine, F. T.; Phair, J. P.; Volberding, P. A., Within-subject variation in CD4 lymphocyte count in asymptomatic human immunodeficiency virus infection: implications for patient monitoring, J. Infect. Dis., 169, 28-36 (1994)
[13] Josuttis, N. M., The C++ Standard Library (1999), Addison-Wesley: Addison-Wesley Boston
[14] Kamina, A.; Makuch, R. W.; Zhao, H., A stochastic modeling of early HIV-1 population dynamics, Math. Biosci., 170, 187-198 (2001) · Zbl 1005.92019
[15] Klenerman, P.; Phillips, R. E.; Rinaldo, C. R.; Wahl, L. M.; Ogg, G.; May, R. M.; McMichael, A. J.; Nowak, M. A., Cytotoxic T lymphocytes and viral turnover in HIV type 1 infection, Proc. Natl Acad. Sci. USA, 93, 15323-15328 (1996)
[16] Kousignian, I., Autran, B., Chouquet, C., Calvez, V., Gomard, E., Katlama, C., Riviere, Y., The IMMUNOCO Study group, Costagliola, D., 2003. Markov modelling of changes in HIV-specific cytotoxic T-lymphocyte responses with time in untreated HIV-1 infected patients. Stat. Med. 22, 1675-1690.
[17] Levy, J. A.; Ramachandran, B.; Barker, E.; Guthrie, J.; Elbeik, T.; Coffin, J. M., Plasma viral load, \( \operatorname{CD} 4^+\) cell counts, and HIV-1 production by cells, Science, 271, 5249, 670-671 (1996)
[18] Lloyd, A. L., The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data, Proc. R. Soc. Lond. B, 268, 847-854 (2001)
[19] Lloyd, A. L., Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics, Theor. Popul. Biol., 60, 59-71 (2001)
[20] Macdonald, G., The analysis of equilibrium in malaria, Trop. Dis. Bull., 49, 813-829 (1952)
[21] McLean, A. R.; Nowak, M. A., Competition between zidovudine sensitive and resistant strains of HIV, AIDS, 6, 71 (1992)
[22] McLean, A. R.; Emery, V. C.; Webster, A.; Griffiths, P. D., Population dynamics of HIV within an individual after treatment with zidovudine, AIDS, 5, 485 (1991)
[23] Merrill, S. J., Modeling the interaction of HIV with cells of the immune system, Lecture Notes Biomath., 83, 371-385 (1989) · Zbl 0688.92002
[24] Mode, C. J.; Sleeman, C. K., An algorithmic synthesis of the deterministic and stochastic paradigms via computer intensive methods, Math. Biosci., 180, 115-126 (2002) · Zbl 1015.92037
[25] Nelson, P. W.; Gilchrist, M. A.; Coombs, D.; Hyman, J. M.; Perelson, A. S., An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci., 1, 267-288 (2004) · Zbl 1060.92038
[26] Niu, M. T.; Stein, D. S.; Schnittman, S. M., Primary human immunodeficiency virus type 1 infection: review of pathogenesis and early treatment intervention in humans and animal retrovirus infections, J. Infect. Dis., 168, 1490-1501 (1993)
[27] Nowak, M. A.; May, R. M., Virus Dynamics (2000), Oxford University Press: Oxford University Press Oxford · Zbl 1101.92028
[28] Nowak, M. A.; Lloyd, A. L.; Vasquez, G. M.; Wiltrout, T. A.; Wahl, L. M.; Bischofberger, N.; Williams, J.; Kinter, A.; Fauci, A. S.; Hirsch, W. M.; Lifson, J. D., Viral dynamics of primary viremia and antiretroviral therapy in Simian Immunodeficiency Virus infection, J. Virol., 71, 7518-7525 (1997)
[29] Perelson, A. S., Modelling viral and immune system dynamics, Nat. Rev: Immunol., 2, 28-36 (2002)
[30] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3 (1999) · Zbl 1078.92502
[31] Perelson, A. S.; Kirschner, D. E.; Boer, R. D., Dynamics of HIV infection of CD4+ T-cells, Math. Biosci., 114, 81 (1993) · Zbl 0796.92016
[32] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell lifespan, and viral generation time, Science, 271, 1582-1585 (1996)
[33] Phillips, A. N.; Youle, M.; Johnson, M.; Loveday, C., Use of a stochastic model to develop understanding of the impact of different patterns of antiretroviral drug use on resistance development, AIDS, 15, 2211-2220 (2001)
[34] Piguet, V.; Schwartz, O.; Gall, S. L.; Trono, D., The downregulation of CD4 and MHC-1 by primate lentiviruses: a paradigm for the modulation of cell surface receptors, Immunol. Rev., 168, 51-63 (1999)
[35] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes in C (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0845.65001
[36] Raboud, J. M.; Montaner, J. S.; Conway, B.; Haley, L.; Sherlock, C.; O’Shaughnessy, M. V.; Schechter, M. T., Variation in Plasma RNA levels, CD4 cell counts, and p24 antigen levels in clinically stable men with human immunodeficiency virus infection, J. Infect. Dis., 174, 191-194 (1996)
[37] Rhee, S. S.; Marsh, J. W., Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization of and degradation of surface CD4, J. Virol., 68, 8, 5156-5163 (1994)
[38] Ruskin, H. J.; Pandey, R. B.; Liu, Y., Viral load and stochastic mutation in a Monte Carlo simulation of HIV, Physica A, 311, 213-220 (2002) · Zbl 0997.92025
[39] Sale, M.; Sadler, B. M.; Stein, D. S., Pharmacokinetic modeling and simulations of interaction of Amprenavir and Ritonavir, Antimicrob. Agents Chemother., 46, 3, 746-754 (2002)
[40] Smith, R.; Wahl, L. M., Distinct effect of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infections with impulsive drug effects, Bull. Math. Bio., 66, 1259-1283 (2004) · Zbl 1334.92239
[41] Smith, R., Wahl, L.M., 2005. Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. Bull. Math. Bio., in press. · Zbl 1334.92240
[42] Tan, W.-Y.; Wu, H., Stochastic modeling of the dynamics of CD4+ T-cell infection by HIV and some Monte Carlo studies, Math. Biosci., 147, 173-205 (1998) · Zbl 0887.92021
[43] Tanaka, M.; Ueno, T.; Nakahara, T.; Sasaki, K.; Ishimoto, A.; Sakai, H., Downregulation of CD4 is required for maintenance of viral infectivity of HIV-1, Virology, 311, 316-325 (2003)
[44] Tuckwell, H. C.; Le Corfec, E., A stochastic model for early HIV-1 population dynamics, J. Theor. Biol., 195, 451-463 (1998)
[45] Wahl, L. M.; Nowak, M. A., Adherence and drug resistance: predictions for therapy outcome, Proc. R. Soc. Lond. B, 267, 835-843 (2000)
[46] Wei, L. M.; Ghosh, S. K.; Taylor, M. E.; Hohnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, M. S.; Shaw, G. M., Viral dynamics in HIV-1 infection, Nature, 373, 117-122 (1995)
[47] Willey, R. L.; Maldarelli, F.; Martin, M. A.; Strebel, K., Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4, J. Virol., 66, 12, 7193-7200 (1992)
[48] Wu, H.; Ding, A. A., Population HIV-1 dynamics in vivo: applicable models and inferential tool for virological data from AIDS clinical trials, Biometrics, 55, 410-418 (1999) · Zbl 1059.62735
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.