×

Collocation method for elastoplastic analysis of a pressurized functionally graded tube. (English) Zbl 1327.74142

Summary: An approach, the radial basis function (RBF) collocation method, is used to obtain numerical solution of both elastic and elastoplastic problem of a pressurized functionally graded tube. RBF is a meshless technique that does not require discretization into elements as is usually done in the finite element method. The implementation of the scheme is achieved with the aid of MATHEMATICA commercial software. The use of the RBF eliminates the need for the hypergeometric function, which has the disadvantage of converging slowly in addition to its complexity. Numerical example for utilizing this scheme is used to show its efficiency and reliability. Excellent agreement with the available literature analytical result is achieved.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

Mathematica
Full Text: DOI

References:

[1] Mahamood, R. M.; Akinlabi, E.T.; Shukla, M.; Pityana, S.: Functionally graded material: An overview. Proceedings of the World Congress on Engineering (2012), vol. III, London, UK, July 4-6, 2012
[2] Alashti R.A., Tarahhomi M.H.: Thermo-elastic analysis of functionally graded toroidal shells. Arab. J. Sci. Eng. 39, 2127-2142 (2014) · Zbl 1390.74029 · doi:10.1007/s13369-013-0742-7
[3] Kursun A., Topcu M.: Thermal stress analysis of functionally graded disc with variable thickness due to linearly increasing temperature load. Arab. J. Sci. Eng. 38, 3531-3549 (2013) · doi:10.1007/s13369-013-0626-x
[4] Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, London (2009) · Zbl 1378.65009 · doi:10.1002/9780470749081
[5] Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[6] Bazilevs Y., Calo V.M., Cottrell J.A., Evans J.A., Hughes T.J.R., Lipton S., Scott M.A., Sederberg T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229-263 (2010) · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036
[7] Nguyen-Thanh N., Kiendl J., Nguyen-Xuan H., Wuchner R., Bletzinger K.U., Bazilevs Y., Rabczuk T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410-3424 (2011) · Zbl 1230.74230 · doi:10.1016/j.cma.2011.08.014
[8] Nguyen V.P., Nguyen-Xuan H.: High-order B-splines based finite elements for delamination analysis of laminated composites. Composite Structures 102, 261-275 (2013) · doi:10.1016/j.compstruct.2013.02.029
[9] Thai C.H., Ferreira A.J.M., Carrera E., Nguyen-Xuan H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196-214 (2013) · doi:10.1016/j.compstruct.2013.04.002
[10] Valizadeh N., Natarajan S., Gonzalez-Estrada O.A., Rabczuk T., Bui T.Q., Bordas S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309-326 (2013) · doi:10.1016/j.compstruct.2012.11.008
[11] Tran L.V., Ferreira A.J.M., Nguyen-Xuan H.: Isogeometric analysis of functionally graded plates using higher-order shear deformation theory. Compos. B 51, 368-383 (2013) · doi:10.1016/j.compositesb.2013.02.045
[12] Tran L.V., Thai C.H., Nguyen-Xuan H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem Anal. Des. 73, 65-76 (2013) · doi:10.1016/j.finel.2013.05.003
[13] Hassani B., Taheri A.H., Moghaddam N.Z.: An improved isogeometrical analysis approach to functionally graded plane elasticity problems. Appl. Math. Model. 37, 9242-9268 (2013) · Zbl 1449.74189 · doi:10.1016/j.apm.2013.04.048
[14] Eraslan A.N., Akis T.: Elastoplastic response of a long functionally graded tube subjected to internal pressure. Turk. J. Eng. Environ. Sci. 29, 361-368 (2005)
[15] Chakraborty A., Gopalakrishnan S., Reddy J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519-539 (2003) · Zbl 1035.74053 · doi:10.1016/S0020-7403(03)00058-4
[16] Giunta, G.; Crisafulli, D.; Belouettar, S.; Carrera, E.: A thermomechanical analysis of functionally graded beams via hierarchical modeling. Compos. Struct. 95, 676-690 (2013) · Zbl 0850.76048
[17] Sburlati R., Bardella L.: Three-dimensional elastic solutions for functionally graded circular plates. Eur. J. Mech. A Solids 30, 219-235 (2011) · Zbl 1278.74100 · doi:10.1016/j.euromechsol.2010.12.008
[18] Marin L., Lesnic D.: The method of fundamental solutions for nonlinear functionally graded materials. Int. J. Solids Struct. 44, 6878-6890 (2007) · Zbl 1166.80300 · doi:10.1016/j.ijsolstr.2007.03.014
[19] Wen P.H., Aliabadi M.H.: Analysis of functionally graded plates by meshless method: a pure analytical formulation. Eng. Anal. Bound. Elem. 36, 639-650 (2012) · Zbl 1351.74060 · doi:10.1016/j.enganabound.2011.11.017
[20] Zhang C., Cui M., Wang J., Gao X.W., Sladek J., Sladek V.: 3D crack analysis in functionally graded materials. Eng. Fract. Mech. 78, 585-604 (2011) · doi:10.1016/j.engfracmech.2010.05.017
[21] Arghavan S., Hematiyan M.R.: Torsion of functionally graded hollow tubes. Eur. J. Mech. A Solids. 28, 551-559 (2009) · Zbl 1158.74402 · doi:10.1016/j.euromechsol.2008.07.009
[22] Gao, X.W.; Zhang, C.; Sladek, J.; Sladek, V.: A Meshless BEM for 2-D Stress Analysis in Linear Elastic FGMs. Third International Workshop on Meshfree Methods for Partial Differential Equations, Bonn, Universität Bonn, September 12-15, 2005, p. 21 · Zbl 1166.74045
[23] Gao X.W., Zhang C., Sladek J., Sladek V.: Fracture analysis of functionally graded materials by BEM. Compos. Sci. Technol. 68, 1209-1215 (2008) · doi:10.1016/j.compscitech.2007.08.029
[24] Lei Z., Zheng Z.: Exact solution for axisymmetric bending of functionally graded circular plate. Tsinghua Sci. Technol. 14, 64-68 (2009) · doi:10.1016/S1007-0214(10)70033-X
[25] Sburlati R.: An axisymmetric elastic analysis for circular sandwich panels with functionally graded cores. Compos. B 43, 1039-1044 (2012) · doi:10.1016/j.compositesb.2011.10.006
[26] Sundararajan N., Prakash T., Ganapathi M.: Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem. Anal. Des. 42, 152-168 (2005) · doi:10.1016/j.finel.2005.06.001
[27] Natarajan S., Kaleeswaran K., Manickam G.: Functionally graded material panel flutter by cell-based smoothed finite elements. J. Coupled Syst. Multiscale Dyn. 1(2), 205-215 (2013) · doi:10.1166/jcsmd.2013.1014
[28] Prakash T., Ganapathi M.: Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. B 37, 642-649 (2006) · doi:10.1016/j.compositesb.2006.03.005
[29] Najafizadeh M.M., Heydari H.R.: Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. Eur. J. Mech. A Solids 23, 1085-1100 (2004) · Zbl 1063.74042 · doi:10.1016/j.euromechsol.2004.08.004
[30] Sburlati R., Bardella L.: Three-dimensional elastic solutions for functionally graded circular plates. Eur. J. Mech. A Solids 30, 219-235 (2011) · Zbl 1278.74100 · doi:10.1016/j.euromechsol.2010.12.008
[31] Gunes R., Aydin M., Apalak M.K., Reddy J.N.: The elasto-plastic impact analysis of functionally graded circular plates under low-velocities. Compos. Struct. 93, 860-869 (2011) · doi:10.1016/j.compstruct.2010.07.008
[32] Sofiyev A.H., Kuruoglu N.: Effect of functionally graded interlayer on the non-linear stability of conical shells in elastic medium. Compos. Struct. 99, 296-308 (2013) · doi:10.1016/j.compstruct.2012.11.044
[33] Thai H.-T., Kim S.-E.: A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct. 99, 172-180 (2013) · doi:10.1016/j.compstruct.2012.11.030
[34] Thai H.-T., Vo T.P.: A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl. Math. Model. 37, 3269-3281 (2013) · Zbl 1351.74034 · doi:10.1016/j.apm.2012.08.008
[35] Oktem A.S., Mantari J.L., Soares C.G.: Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory. Eur. J. Mech. A Solids 36, 163-172 (2012) · Zbl 1348.74215 · doi:10.1016/j.euromechsol.2012.03.002
[36] Liu G.R.: MeshFree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2009) · Zbl 1205.74003 · doi:10.1201/9781420082104
[37] Kansa E.J.: Multi-quadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127-145 (1990) · Zbl 0692.76003 · doi:10.1016/0898-1221(90)90270-T
[38] Kansa E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to hyperbolic, parabolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147-161 (1990) · Zbl 0850.76048 · doi:10.1016/0898-1221(90)90271-K
[39] Kansa E.J., Carlson R.E.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24, 99-120 (1992) · Zbl 0765.65008 · doi:10.1016/0898-1221(92)90174-G
[40] Wang H., Qin Q.-H.: Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng. Anal. Bound. Elem. 32, 704-712 (2008) · Zbl 1244.74234 · doi:10.1016/j.enganabound.2007.11.001
[41] Xiang S., Kang G.-w.: A nth-order shear deformation theory for the bending analysis on the functionally graded plates. Eur. J. Mech. A Solids 37, 336-343 (2013) · Zbl 1347.74060 · doi:10.1016/j.euromechsol.2012.08.005
[42] Ferreira A.J.M., Roque C.M.C., Martins P.A.L.S.: Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos. Struct. 66, 287-293 (2004) · doi:10.1016/j.compstruct.2004.04.050
[43] Ferreira A.J.M.: Free vibration analysis of Timoshenko beams and Mindlin plates by Radial Basis Functions. Int. J. Comput. Methods 2, 15-31 (2005) · Zbl 1189.74047 · doi:10.1142/S0219876205000314
[44] Zhou F., Zhang J., Sheng X., Li G.: Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng. Anal. Bound. Elem. 35, 244-252 (2011) · Zbl 1259.65188 · doi:10.1016/j.enganabound.2010.08.009
[45] Liu G.R., Gu Y.T., Dai K.Y.: Assessment and applications of point interpolation methods for computational mechanics. Int. J. Numer. Meth. Eng. 59, 1373-1379 (2004) · Zbl 1041.74562 · doi:10.1002/nme.925
[46] Liu G.R., Gu Y.T.: A meshfree method: meshfree weak-strong (MWS) form method, for 2-D solids. Comput. Mech. 33, 2-14 (2003) · Zbl 1063.74105 · doi:10.1007/s00466-003-0477-5
[47] Liu G.R., Zhang G.Y., Gu Y.T., Wang Y.Y.: A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput. Mech. 36, 2-14 (2005) · Zbl 1138.74420
[48] Liu G.R., Li Y., Dai K.Y., Luan M.T., Xue W.: A linearly conforming radial point interpolation method for solid mechanics problems. Int. J. Comput. Methods 3, 401-428 (2006) · Zbl 1198.74120 · doi:10.1142/S0219876206001132
[49] Liu G.R., Zhang G.Y., Wang Y.Y., Zhong Z.H., Li G.Y., Han X.: A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int. J. Solids Struct. 44, 3840-3860 (2007) · Zbl 1135.74050 · doi:10.1016/j.ijsolstr.2006.10.025
[50] Roque C.M.C., Ferreira A.J.M., Jorge R.M.N.: A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. J. Sound Vib. 300, 1048-1070 (2007) · doi:10.1016/j.jsv.2006.08.037
[51] Liu Q., Gu Y.T., Zhuang P., Liu F., Nie Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1-12 (2011) · Zbl 1377.76025 · doi:10.1007/s00466-011-0573-x
[52] Xiang S., Kang G.-w.: Static analysis of functionally graded plates by the various shear deformation theory. Compos. Struct. 99, 224-230 (2013) · doi:10.1016/j.compstruct.2012.11.021
[53] Sadeghirad A., Kani I.M., Rahimian M., Astaneh A.V.: Meshfree local integration on line method (MLILM) for linear elasticity. Arab. J. Sci. Eng. 33(2B), 411-434 (2008)
[54] Sadeghirad A., Kani I.M., Noorzad A., Rahimian M., Astaneh A.V.: Elastic fracture analyses using an enriched collocation method. Arab. J. Sci. Eng. 35(1B), 165-181 (2010)
[55] Salari-Rad H., Rahimi-Dizadji M., Rahimi-Pour S., Delforouzi M.: Meshless EFG simulation of linear elastic fracture propagation under various loadings. Arab. J. Sci. Eng. 36, 1381-1392 (2011) · doi:10.1007/s13369-011-0125-x
[56] Golberg M.A., Chen C.S., Bowman H.: Some recent results and proposals for the use of radial basis functions in the BEM. Eng. Anal. Bound. Elem 23, 285-296 (1999) · Zbl 0948.65132 · doi:10.1016/S0955-7997(98)00087-3
[57] Cheng A.H., Young D.L., Tsai C.C.: Solution of Poisson’s equation by iterative DRBEM using compactly supported, positive definite radial basis function. Eng. Anal. Bound. Elem. 24, 549-557 (2000) · Zbl 0966.65089 · doi:10.1016/S0955-7997(00)00035-7
[58] Florez W., Power H., Chejne F.: Multi-domain dual reciprocity BEM approach for the Navier-Stokes systems of equations. Commun. Numer. Methods Eng. 16, 671-681 (2000) · Zbl 1004.76055 · doi:10.1002/1099-0887(200010)16:10<671::AID-CNM366>3.0.CO;2-V
[59] Wen P.H., Aliabadi M.H., Young A.: Application of dual reciprocity method to plates and shells. Eng. Anal. Bound. Elem. 24, 583-590 (2000) · Zbl 1010.74077 · doi:10.1016/S0955-7997(00)00038-2
[60] Sladek J., Sladek V.: A meshless method for large deflection of plates. Comput. Mech. 30, 155-163 (2003) · Zbl 1128.74345 · doi:10.1007/s00466-002-0375-2
[61] Mai-Duy N., Tran-Cong T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14, 185-199 (2001) · doi:10.1016/S0893-6080(00)00095-2
[62] Mai-Duy N., Tran-Cong T.: Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. Int. J. Numer. Methords Fluids 37, 65-86 (2001) · Zbl 1047.76101 · doi:10.1002/fld.165
[63] Mai-Duy N., Tran-Cong T.: Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations. Eng. Anal. Bound. Elem. 26, 133-156 (2002) · Zbl 0996.65131 · doi:10.1016/S0955-7997(01)00092-3
[64] Ferreira A.J.M.: A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos. Struct. 59, 385-392 (2003) · doi:10.1016/S0263-8223(02)00239-8
[65] Narcowich F.J., Ward J.D., Wendland H.: Refined error estimates for radial basis function interpolation. Constr. Approx. 19, 541-564 (2003) · Zbl 1049.41011 · doi:10.1007/s00365-002-0529-7
[66] Dai K.J., Liu G.R., Lim K.M., Han X., Du S.Y.: A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates. Comput. Mech. 34, 213-223 (2004) · Zbl 1138.74417 · doi:10.1007/s00466-004-0566-0
[67] Dehghan M., Shokri A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400-410 (2009) · Zbl 1168.65398 · doi:10.1016/j.cam.2008.12.011
[68] Tatari M., Dehghan M.: A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng. Anal. Bound. Elem. 34, 206-212 (2010) · Zbl 1244.80024 · doi:10.1016/j.enganabound.2009.09.003
[69] Liew K.M., Zhao Xin., Ferreira Antonio J.M.: A review of meshless methods for laminated and functionally graded plates and shells. Compos. Struct. 93, 2031-2041 (2011) · doi:10.1016/j.compstruct.2011.02.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.