×

Comparison results of nonstandard \(P_2\) finite element methods for the biharmonic problem. (English) Zbl 1327.65211

Summary: As modern variant of nonconforming schemes, discontinuous Galerkin finite element methods appear to be highly attractive for fourth-order elliptic PDEs. There exist various modifications and the most prominent versions with first-order convergence properties are the symmetric interior penalty DG method and the \(C^{0}\) interior penalty method which may compete with the classical Morley nonconforming FEM on triangles. Those schemes differ in their various jump and penalisation terms and also in the norms. This paper proves that the best-approximation errors of all the three schemes are equivalent in the sense that their minimal error in the respective norm and the optimal choice of a discrete approximation can be bounded from below and above by each other. The equivalence constants do only depend on the minimal angle of the triangulation and the penalisation parameter of the schemes; they are independent of any regularity requirement and hold for an arbitrarily coarse mesh.

MSC:

65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y20 Complexity and performance of numerical algorithms

Software:

na14
Full Text: DOI

References:

[1] J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms20 (1999) 117-137. · Zbl 0938.65129 · doi:10.1023/A:1019155918070
[2] G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp.31 (1977) 45-59. · Zbl 0364.65085 · doi:10.1090/S0025-5718-1977-0431742-5
[3] P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math.97 (2004) 219-268. · Zbl 1063.65120 · doi:10.1007/s00211-003-0492-7
[4] D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P_{1} element. Calcolo46 (2009) 149-155. · Zbl 1192.65142 · doi:10.1007/s10092-009-0003-z
[5] S.C. Brenner, and L.-Y. Sung, C^{0} interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput.22/23 (2005) 83-118. · Zbl 1071.65151
[6] S.C. Brenner, T. Gudi and L.-Y. Sung, An a posteriori error estimator for a quadratic C^{0}-interior penalty method for the biharmonic problem. IMA J. Numer. Anal.30 (2010) 777-798. · Zbl 1201.65197 · doi:10.1093/imanum/drn057
[7] C. Carstensen, D. Gallistl and J. Hu, A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles. Numer. Math.124 (2013) 309-335. · Zbl 1316.74060 · doi:10.1007/s00211-012-0513-5
[8] C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl.68 (2014) 2167-2181. · Zbl 1362.65123 · doi:10.1016/j.camwa.2014.07.019
[9] C. Carstensen, D. Peterseim and M. Schedensack, Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal.50 (2012) 2803-2823. · Zbl 1261.65115 · doi:10.1137/110845707
[10] P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4. of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1978). · Zbl 0383.65058
[11] G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg.191 (2002) 3669-3750. · Zbl 1086.74038 · doi:10.1016/S0045-7825(02)00286-4
[12] X. Feng and O.A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp.76 (2007) 1093-1117. · Zbl 1117.65130 · doi:10.1090/S0025-5718-07-01985-0
[13] E.H. Georgoulis, P. Houston and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal.31 (2011) 281-298. · Zbl 1209.65124 · doi:10.1093/imanum/drp023
[14] P. Grisvard, Singularities in boundary value problems. Vol. 22 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1992). · Zbl 0766.35001
[15] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp.79 (2010) 2169-2189. · Zbl 1201.65198 · doi:10.1090/S0025-5718-10-02360-4
[16] J. Hu, Z. Shi and J. Xu, Convergence and optimality of the adaptive Morley element method. Numer. Math.121 (2012) 731-752. · Zbl 1255.65212 · doi:10.1007/s00211-012-0445-0
[17] I. Mozolevski and E. Süli, A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math.3 (2003) 596-607. · Zbl 1048.65100 · doi:10.2478/cmam-2003-0037
[18] R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comp.77 (2008) 227-241. · Zbl 1131.65095 · doi:10.1090/S0025-5718-07-01959-X
[19] A. Veeser, Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. (2015). Doi: · Zbl 1347.41043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.