×

Convergence and optimality of the adaptive Morley element method. (English) Zbl 1255.65212

An analysis of the convergence and optimality of the adaptive version of the Morley element method for a 4th-order elliptic problem is carried out. Whereas adaptive conforming finite element methods applied to second order elliptic problems have been extensively studied, very few results exist for nonconforming methods in fourth order problems, the main difficulty being the nonconformity of the discrete space and the lack of the Galerkin orthogonality. The analysis here is based on a quasi-orthogonality result which holds specifically for the Morley element method and a new parameter dependent estimator. With the additional help of the discrete reliability of the estimator, it is possible to show convergence and optimality of the adaptive algorithm based on the Morley element method. The generalization to the nonconforming linear elements in two and three dimensions is also discussed.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J30 Higher-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Ainsworth M., Rankin R.: Robust a posteriori error estimation for the nonconforming Fortin-Soulie finite-element approximation. Math. Comput. 77, 1917–1939 (2008) · Zbl 1198.65215 · doi:10.1090/S0025-5718-08-02116-9
[2] Babuska I., Rheinboldt W.C.: Error estimates for adaptive finite element computations. SIAM. J. Numer. Anal. 15, 736–754 (1978) · Zbl 0398.65069 · doi:10.1137/0715049
[3] da Veiga L.B., Niiranen J., Stenberg R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007) · Zbl 1110.74050 · doi:10.1007/s00211-007-0066-1
[4] Binev P., Dahmen W., DeVore R., Petrushev P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002) · Zbl 1039.42030
[5] Binev P., DeVore R.: Fast computation in adaptive tree approximation. Numer. Math. 97, 193–217 (2004) · Zbl 1075.65158 · doi:10.1007/s00211-003-0493-6
[6] Binev P., Dahmen W., DeVore R.: Adaptive finite-element methods with convergence rate. Numer. Math. 97, 219–268 (2004) · Zbl 1063.65120 · doi:10.1007/s00211-003-0492-7
[7] Brenner S., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994) · Zbl 0804.65101
[8] Brenner S.C., Sung L.-Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005) · Zbl 1071.65151 · doi:10.1007/s10915-004-4135-7
[9] Carstensen C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005) · Zbl 1100.65089 · doi:10.1007/s00211-004-0577-y
[10] Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite-element methods. Numer. Math. 92, 233–256 (2002) · Zbl 1010.65044 · doi:10.1007/s002110100378
[11] Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite-element methods. Numer. Math. 107, 473–502 (2007) · Zbl 1127.65083 · doi:10.1007/s00211-007-0068-z
[12] Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM. J. Numer. Anal. 45, 68–82 (2007) · Zbl 1165.65072 · doi:10.1137/050628854
[13] Carstensen C., Hoppe R.H.W.: Convergence analysis of an adaptive nonconforming finite-element method. Numer. Math. 103, 251–266 (2006) · Zbl 1101.65102 · doi:10.1007/s00211-005-0658-6
[14] Cascon J. Manuel, Kreuzer C., Nochetto R.H., Siebert K.G.: Quasi-optimal convergence rate for an adaptive finite-element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008) · Zbl 1176.65122 · doi:10.1137/07069047X
[15] Chen L., Holst M., Xu J.: Convergence and optimality of adaptive mixed finite-element methods. Math. Comput. 78, 35–53 (2008) · Zbl 1198.65211
[16] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland, 1978; reprinted as SIAM Classics in Applied Mathematics (2002) · Zbl 0383.65058
[17] Dari E., Duran R., Padra C.: Error estimators for nonconforming finite-element approximations of the Stokes problem. Math. Comput. 64, 1017–1033 (1995) · Zbl 0827.76042 · doi:10.1090/S0025-5718-1995-1284666-9
[18] Dari E., Duran R., Padra C., Vampa V.: A posteriori error estimators for nonconforming finite- element methods. Math. Model. Numer. Anal. 30, 385–400 (1996) · Zbl 0853.65110
[19] Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996) · Zbl 0854.65090 · doi:10.1137/0733054
[20] Gudi T.: A new error analysis for discontinous finite element methods for linear problems. Math. Comput. 79, 2169–2189 (2010) · Zbl 1201.65198 · doi:10.1090/S0025-5718-10-02360-4
[21] Hu J., Shi Z.C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009) · Zbl 1169.74646 · doi:10.1007/s00211-008-0205-3
[22] Hu, J., Shi, Z.C., Xu, J.C.: Convergence and optimality of adaptive nonconforming methods for high-order differential equations, Research Report 19. School of Mathematical Sciences and Institute of Mathematics, Peking University (2009)
[23] Hu, J., Xu, J.C.: Convergence of Adaptive Conforming and Nonconforming Finite Element Methods for the Perturbed Stokes Equation, Research Report 73. School of Mathematical Sciences and Institute of Mathematics, Peking University. http://www.math.pku.edu.cn:8000/var/preprint/7297.pdf (2007)
[24] Marini L.: An inexpensive method for the evaluation of the solution of the lowest order Raviart–Thomas mixed method. SIAM J. Numer. Anal. 22, 493–496 (1985) · Zbl 0573.65082 · doi:10.1137/0722029
[25] Morley L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Q. 19, 149–169 (1968)
[26] Morin P., Nochetto R., Siebert K.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000) · Zbl 0970.65113 · doi:10.1137/S0036142999360044
[27] Morin P., Nochetto R.H., Siebert K.G.: Convergence of adaptive finite-element methods. SIAM Rev. 44, 631–658 (2002) · Zbl 1016.65074 · doi:10.1137/S0036144502409093
[28] Shi Z.C.: Error estimates for the Morley element. Chin. J. Numer. Math. Appl. 12, 102–108 (1990)
[29] Stevenson R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007) · Zbl 1136.65109 · doi:10.1007/s10208-005-0183-0
[30] Stevenson R.: The completion of locally refined simplicial partitions created by bisection. Math.Comput. 77, 227–241 (2007) · Zbl 1131.65095
[31] Verfürth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Technique. Wiley-Teubner, New York (1996) · Zbl 0853.65108
[32] Wang, M., Zhang, S.: Local a priori and a posteriori error estimates of finite-elements for biharmonic equation. Research Report 13. School of Mathematical Sciences and Institute of Mathematics, Peking University (2006)
[33] Wang, M., Xu, J.C.: Minimal finite-element spaces for 2m-th order partial differential equations in R n . Research Report 29. School of Mathematical Sciences and Institute of Mathematics, Peking University (submitted to Mathematics of Computation) (2006)
[34] Xu J.C.: Iterative methods by space secomposition and subspace correction. SIAM Rev. 34, 581–613 (1992) · Zbl 0788.65037 · doi:10.1137/1034116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.