×

Overdetermined problems for fully nonlinear elliptic equations. (English) Zbl 1327.35259

Summary: We study the situation in which a solution to a fully nonlinear elliptic equation in a bounded domain \(\Omega\) with an overdetermined boundary condition prescribing both Dirichlet and Neumann constant data forces the domain \(\Omega\) to be a ball. This is a generalization of Serrin’s classical result from 1971. We prove that this rigidity result holds for every fully nonlinear Hessian equation which involves a differentiable operator. We also extend the result to some equations with non differentiable operators such as Pucci operators, under the supplementary assumptions that the space dimension is two or the domain is strictly convex.

MSC:

35N25 Overdetermined boundary value problems for PDEs and systems of PDEs
35B06 Symmetries, invariants, etc. in context of PDEs
35B50 Maximum principles in context of PDEs
35J60 Nonlinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Agostiniani, V., Magnanini, R.: Symmetries in an overdetermined problem for the Green’s function. Discret. Contin. Dyn. Syst. Ser. S 4(4), 791-800 (2011) · Zbl 1210.35169 · doi:10.3934/dcdss.2011.4.791
[2] Armstrong, S.N., Sirakov, B., Smart, C.K.: Singular solutions of fully nonlinear elliptic equations and applications. Arch. Ration. Mech. Anal. 205(2), 345-394 (2012) · Zbl 1262.35105 · doi:10.1007/s00205-012-0505-8
[3] Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22(1), 1-37 (1991) · Zbl 0784.35025 · doi:10.1007/BF01244896
[4] Birindelli, I., Demengel, F.: Overdetermined problems for some fully non linear operators. Commun. Partial Differ. Equ. 38(4), 608-628 (2013) · Zbl 1276.35119 · doi:10.1080/03605302.2012.756521
[5] Brandolini, B., Nitsch, C., Salani, P., Trombetti, C.: Serrin-type overdetermined problems: an alternative proof. Arch. Ration. Mech. Anal. 190(2), 267-280 (2008) · Zbl 1161.35025 · doi:10.1007/s00205-008-0119-3
[6] Brock, F., Henrot, A.: A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative. Rend. Circ. Mat. Palermo (2) 51(3), 375-390 (2002) · Zbl 1194.35282 · doi:10.1007/BF02871848
[7] Buttazzo, G., Kawohl, B.: Overdetermined boundary value problems for the \[\infty \]∞-Laplacian. Int. Math. Res. Not. IMRN 2, 237-247 (2011) · Zbl 1219.35145
[8] Choulli, M., Henrot, A.: Use of the domain derivative to prove symmetry results in partial differential equations. Math. Nachr. 192, 91-103 (1998) · Zbl 0912.35114 · doi:10.1002/mana.19981920106
[9] Cianchi, A., Salani, P.: Overdetermined anisotropic elliptic problems. Math. Ann. 345(4), 859-881 (2009) · Zbl 1179.35107 · doi:10.1007/s00208-009-0386-9
[10] Da Lio, F., Sirakov, B.: Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations. J. Eur. Math. Soc. 9(2), 317-330 (2007) · Zbl 1176.35068 · doi:10.4171/JEMS/81
[11] Enache, Cristian: Maximum principles and symmetry results for a class of fully nonlinear elliptic PDEs. Nonlinear Differ. Equ. Appl. 17(5), 591-600 (2010) · Zbl 1200.35113 · doi:10.1007/s00030-010-0070-5
[12] Enache, C., Sakaguchi, S.: Some fully nonlinear elliptic boundary value problems with ellipsoidal free boundaries. Math. Nachr. 284(14-15), 1872-1879 (2011) · Zbl 1231.35080 · doi:10.1002/mana.200810170
[13] Farina, A., Kawohl, B.: Remarks on an overdetermined boundary value problem. Calc. Var. Partial Differ. Equ. 31(3), 351-357 (2008) · Zbl 1166.35353 · doi:10.1007/s00526-007-0115-8
[14] Farina, A., Valdinoci, E.: Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195(3), 1025-1058 (2010) · Zbl 1236.35058 · doi:10.1007/s00205-009-0227-8
[15] Farina, A., Valdinoci, E.: Overdetermined problems in unbounded domains with Lipschitz singularities. Rev. Mat. Iberoam. 26(3), 965-974 (2010) · Zbl 1211.35206 · doi:10.4171/RMI/623
[16] Fragalà, I., Gazzola, F.: Partially overdetermined elliptic boundary value problems. J. Differ. Equ. 245(5), 1299-1322 (2008) · Zbl 1156.35049 · doi:10.1016/j.jde.2008.06.014
[17] Fragalà, I., Gazzola, F., Kawohl, B.: Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254(1), 117-132 (2006) · Zbl 1220.35077 · doi:10.1007/s00209-006-0937-7
[18] Garofalo, N., Lewis, J.L.: A symmetry result related to some overdetermined boundary value problems. Am. J. Math. 111(1), 9-33 (1989) · Zbl 0681.35016 · doi:10.2307/2374477
[19] Hauswirth, L., Hélein, F., Pacard, F.: On an overdetermined elliptic problem. Pac. J. Math. 250(2), 319-334 (2011) · Zbl 1211.35207 · doi:10.2140/pjm.2011.250.319
[20] Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75-108 (1983)
[21] Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Commun. Partial Differ. Equ. 16(4-5), 585-615 (1991) · Zbl 0741.35014 · doi:10.1080/03605309108820770
[22] Magnanini, R., Sakaguchi, C.: Matzoh ball soup: heat conductors with a stationary isothermic surface. Ann. of Math. (2) 156(3), 931-946 (2002) · Zbl 1011.35066 · doi:10.2307/3597287
[23] Miller, K.: Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications. Ann. Mat. Pura Appl. 4(90), 297-329 (1971) · Zbl 0231.35004 · doi:10.1007/BF02415053
[24] Nadirashvili, N., Vlăduţ, S.: Singular solutions of Hessian fully nonlinear elliptic equations. Adv. Math. 228(3), 1718-1741 (2011) · Zbl 1226.35027 · doi:10.1016/j.aim.2011.06.030
[25] Prajapat, J.: Serrin’s result for domains with a corner or cusp. Duke Math. J. 91(1), 29-31 (1998) · Zbl 0943.35022 · doi:10.1215/S0012-7094-98-09103-7
[26] Quaas, A., Sirakov, B.: Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators. Adv. Math. 218(1), 105-135 (2008) · Zbl 1143.35077 · doi:10.1016/j.aim.2007.12.002
[27] Ramm, A.G.: Symmetry problem. Proc. Am. Math. Soc. 141(2), 515-521 (2013) · Zbl 1264.31003 · doi:10.1090/S0002-9939-2012-11400-5
[28] Reichel, W.: Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains. Z. Anal. Anwendungen 15(3), 619-635 (1996) · Zbl 0857.35010 · doi:10.4171/ZAA/719
[29] Reichel, W.: Radial symmetry for elliptic boundary-value problems on exterior domains. Arch. Ration. Mech. Anal. 137(4), 381-394 (1997) · Zbl 0891.35006 · doi:10.1007/s002050050034
[30] Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304-318 (1971) · Zbl 0222.31007 · doi:10.1007/BF00250468
[31] Silvestre, L., Sirakov, B.: Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Comm. Partial Differ. Equ. 39(9), 1694-1717 (2014) · Zbl 1308.35043 · doi:10.1080/03605302.2013.842249
[32] Sirakov, B.: Symmetry for exterior elliptic problems and two conjectures in potential theory. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 135-156 (2001) · Zbl 0997.35014 · doi:10.1016/S0294-1449(00)00052-4
[33] Weinberger, H.F.: Remark on the preceding paper of Serrin. Arch. Ration. Mech. Anal. 43, 319-320 (1971) · Zbl 0222.31008 · doi:10.1007/BF00250469
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.