×

Overdetermined problems for some fully nonlinear operators. (English) Zbl 1276.35119

The authors consider the overdetermined boundary value problem \[ \begin{cases} |\nabla u|^\alpha {\mathcal M}_{a,A}(D^2u)+f(u)=0 & \text{in}\;\Omega,\\ u=0 & \text{on}\;\partial\Omega,\\ \partial_{\vec{n}}u=c & \text{on}\;\partial\Omega, \end{cases} \] where \(\alpha>-1\), \(\Omega\) ia a bounded \({\mathcal C}^{2,h}\) domain for some \(0<h<1\), \(\vec{n}\) is the unit outer normal to \(\Omega\), \(c\) is a constant, \({\mathcal M}_{a,A}\) is one of the Pucci operators, and \(f\) is a Hölder continuous function.
They prove that if there exists a non-negative viscosity solution \(u\) of the overdetermined boundary problem above, then either \(u\equiv0\) (and \(c=f(0)=0\)), or \(\Omega\) is a ball and \(u\) is radial (and \(c\neq0\)).

MSC:

35N25 Overdetermined boundary value problems for PDEs and systems of PDEs
35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations
35D40 Viscosity solutions to PDEs
35B07 Axially symmetric solutions to PDEs

References:

[1] Armstrong S., Arch. Rat. Mech. Anal. 205 pp 345– (2012) · Zbl 1262.35105 · doi:10.1007/s00205-012-0505-8
[2] DOI: 10.1002/cpa.3160470105 · Zbl 0806.35129 · doi:10.1002/cpa.3160470105
[3] DOI: 10.5802/afst.1070 · Zbl 1129.35369 · doi:10.5802/afst.1070
[4] DOI: 10.3934/cpaa.2007.6.335 · Zbl 1132.35032 · doi:10.3934/cpaa.2007.6.335
[5] DOI: 10.1016/j.jde.2010.03.015 · Zbl 1193.35115 · doi:10.1016/j.jde.2010.03.015
[6] Birindelli I., One-Dimensional Symmetry for Solutions of Allen Cahn Fully Nonlinear Equations (2010) · Zbl 1227.35029
[7] Birindelli I., Nonlinear Analysis: Theory, Methods & Applications 75 pp 6237– (2010) · Zbl 1254.35099 · doi:10.1016/j.na.2012.06.028
[8] Buttazzo G., Int. Math. Res. Not. pp 237– (2011)
[9] Caffarelli L., Fully-Nonlinear Equations (1995) · Zbl 0834.35002 · doi:10.1090/coll/043
[10] DOI: 10.4171/JEMS/81 · Zbl 1176.35068 · doi:10.4171/JEMS/81
[11] El Soufi A., Illinois J. Math. 51 pp 645– (2007)
[12] DOI: 10.1002/cpa.3160350303 · Zbl 0469.35022 · doi:10.1002/cpa.3160350303
[13] DOI: 10.1007/s00526-007-0115-8 · Zbl 1166.35353 · doi:10.1007/s00526-007-0115-8
[14] Farina A., Adv. Nonlinear Anal. 1 pp 27– (2012)
[15] DOI: 10.1007/BF01221125 · Zbl 0425.35020 · doi:10.1007/BF01221125
[16] Helein F., Pacific J. Math. 250 pp 319– (2011) · Zbl 1211.35207 · doi:10.2140/pjm.2011.250.319
[17] Imbert C., Adv. Math. 233 pp 196– (2012) · Zbl 1262.35065 · doi:10.1016/j.aim.2012.07.033
[18] Ishii H., Sugaku Expositions 9 pp 135– (1996)
[19] DOI: 10.5802/aif.2438 · Zbl 1166.53029 · doi:10.5802/aif.2438
[20] DOI: 10.1016/j.crma.2005.11.003 · Zbl 1134.35048 · doi:10.1016/j.crma.2005.11.003
[21] DOI: 10.1007/BF00250468 · Zbl 0222.31007 · doi:10.1007/BF00250468
[22] DOI: 10.1016/S0294-1449(00)00052-4 · Zbl 0997.35014 · doi:10.1016/S0294-1449(00)00052-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.