×

Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification. (English) Zbl 1326.93034

Summary: This paper deals with the output tracking problem of a MIMO system subjected to a class of actuator faults and unmatched perturbations. The proposed methodology is based on high order sliding mode observation and identification techniques. A dynamic sliding surface is proposed using a backstepping-like design strategy in order to counteract the effects of the unmatched perturbations. Whereas a continuous sliding mode control is designed to steer the states toward the sliding surface. The identified value of the fault is injected to alleviate the control gain while accomplishing fault accommodation. As a consequence, the chattering is attenuated. A simulation example for a 3-DOF helicopter highlights the efficiency of the present method.

MSC:

93B35 Sensitivity (robustness)
93B12 Variable structure systems
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] Alwi, H.; Edwards, C.; Tan, C. P., Fault detection and fault-tolerant control using sliding modes (2011), AIC, Springer-Verlag: AIC, Springer-Verlag New York · Zbl 1237.93002
[2] Basin, M. V.; Loukianov, A. G.; Hernández-González, M., Joint state and parameter estimation for uncertain stochastic nonlinear polynomial systems, International Journal of Systems Science, 44, 1200-1208 (2013) · Zbl 1278.93244
[3] Bejarano, F. J.; Figueroa, M.; Pacheco, J.; De Jesus Rubio, J., Robust fault diagnosis of disturbed linear systems via a sliding mode high order differentiator, International Journal of Control, 85, 648-659 (2012) · Zbl 1256.93031
[4] Blanke, M.; Kinnaert, M.; Lunze, M.; Staroswiecki, M., Diagnosis and fault tolerant control (2003), Springer: Springer New York · Zbl 1023.93001
[5] Cieslak, J.; Henry, D.; Zolghadri, A., Fault tolerant flight control: from theory to piloted flight simulator experiments, IET Control Theory & Applications, 4, 1451-1464 (2010)
[6] Corradini, M. L.; Monteriu, A.; Orlando, G., An actuator failure tolerant control scheme for an underwater remotely operated vehicle, IEEE Transactions on Control Systems Technology, 19, 1036-1046 (2011)
[7] Davila, J., Exact tracking using backstepping control design and high-order sliding modes, Transactions on Automatic Control, 58, 2077-2081 (2013) · Zbl 1369.93397
[8] Drakunov, S. V.; Izosimov, D. B.; Luk’yanov, A. G.; Utkin, V. I., Block control principle I, Automation and Remote Control, 51, 601-609 (1990) · Zbl 0722.93021
[9] Efimov, D.; Zolghadri, A.; Rassi, T., Actuator fault detection and compensation under feedback control, Automatica, 47, 1699-1705 (2011) · Zbl 1226.93066
[10] Ferreira, A.; Fridman, L.; Punta, E.; Bartolini, G., Output nested backward compensation of unmatched effects of unknown inputs, (Proc. of the IEEE Conf. on Decis. and Control (2010)), 1448-1453
[11] Fridman, L.; Davila, J.; Levant, A., High-order sliding-mode observation for linear systems with unknown inputs, Nonlinear Analysis. Hybrid Systems, 5, 337-347 (2011)
[12] Hamayun, M. T.; Edwards, C.; Alwi, H., A fault tolerant control allocation scheme with output integral sliding modes, Automatica, 49, 1830-1837 (2013) · Zbl 1360.93204
[13] Kim, Y.; Hwang, I.; Kim, S., A survey on fault detection, isolation and reconfiguration methods, IEEE Transactions on Control Systems Technology, 18, 636-653 (2010)
[14] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 1247-1263 (1993) · Zbl 0789.93063
[15] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, 76, 924-941 (2003) · Zbl 1049.93014
[16] Louk’yanov, A.; Utkin, V., Methods of reducing equations for dynamic systems to a regular form, Automation and Remote Control, 42, 4, 413-420 (1993) · Zbl 0466.93016
[17] Moreno, J. A.; Osorio, M., Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control, 57, 1035-1040 (2012) · Zbl 1369.93568
[18] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57, 2106-2110 (2012) · Zbl 1369.93128
[20] Rios, H.; Kamal, S.; Fridman, L. M.; Zolghadri, A., Fault tolerant control allocation via continuous integral sliding-modes: a HOSM-observer approach, Automatica, 51, 318-325 (2015) · Zbl 1309.93053
[21] Utkin, V. I., Sliding modes in control and optimization (1992), Springer Verlag: Springer Verlag Berlin, Germany · Zbl 0748.93044
[22] Utkin, V. I.; Loukianov, A. G.; Castillo-Toledo, B.; Rivera, J., Sliding mode regulator design, (Sabanovic, A.; Fridman, L.; Spurgeon, S., Variable structure systems: from principles to implementation (2004), IEE, Michel Faraday House: IEE, Michel Faraday House London), 19-43 · Zbl 1145.93331
[23] Wang, W.; Wen, C., Adaptive compensation for infinite number of actuator failures or faults, Automatica, 47, 2197-2210 (2011) · Zbl 1228.93070
[24] Zolghadri, A.; Castang, F.; Henry, D., Design of robust fault detection filters for multivariable feedback systems, International Journal of Modelling and Simulation, 26, 17-25 (2006)
[25] Zolghadri, A.; Henry, D.; Cieslak, J.; Efimov, D.; Goupil, P., Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles—from theory to application (2013), Springer-Verlag: Springer-Verlag London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.