×

Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. (English) Zbl 1326.81099

Summary: In this paper we introduce and investigate the concept of reproducing pairs as a generalization of continuous frames. Reproducing pairs yield a bounded analysis and synthesis process while the frame condition can be omitted at both stages. Moreover, we will investigate certain continuous frames (resp. reproducing pairs) on LCA groups, which can be described as a continuous version of nonstationary Gabor systems and state sufficient conditions for these systems to form a continuous frame (resp. reproducing pair). As a byproduct we identify the structure of the frame operator (resp. resolution operator). We will apply our results to systems generated by a unitary action of a subset of the affine Weyl-Heisenberg group in \(L^{2}(\mathbb{R})\). This setup will also serve as a nontrivial example of a system for which, whereas continuous frames exist, no dual system with the same structure exists even if we drop the frame property.

MSC:

81R30 Coherent states
22E70 Applications of Lie groups to the sciences; explicit representations
22B05 General properties and structure of LCA groups
43A32 Other transforms and operators of Fourier type
42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Ali S T, Antoine J-P and Gazeau J-P 1993 Continuous frames in Hilbert spaces Ann. Phys.222 1–37 · Zbl 0782.47019 · doi:10.1006/aphy.1993.1016
[2] Ali S T, Antoine J-P and Gazeau J-P 1993 Relativistic quantum frames Ann. Phys.222 38–88 · Zbl 0782.47020 · doi:10.1006/aphy.1993.1017
[3] Ali S T, Antoine J-P and Gazeau J-P 2014 Coherent States, Wavelets and their Generalizations(Graduate Texts in Contemporary Physics) 2nd edn (Berlin: Springer) · Zbl 1440.81006 · doi:10.1007/978-1-4614-8535-3
[4] Antoine J-P 1998 The continuous wavelet transform in image processing CWI Q.1 323–46 · Zbl 0917.65120
[5] Antoine J-P and Balazs P 2011 Frames and semi-frames J. Phys. A: Math. Theor.44 205201 · Zbl 1215.81114
[6] Antoine J-P and Balazs P 2011 Frames and semi-frames J. Phys. A: Math. Theor.44 2 Corrigendum · Zbl 1215.81114
[7] Antoine J-P and Balazs P 2012 Frames, semi-frames and Hilbert scales Numer. Funct. Anal. Optim.33 736–69 · Zbl 1255.42024 · doi:10.1080/01630563.2012.682128
[8] Antoine J-P and Trapani C 2009 Partial Inner Product Spaces: Theory and Applications(Lecture Notes in Mathematics) (Berlin: Springer) · Zbl 1195.46001 · doi:10.1007/978-3-642-05136-4
[9] Askari-Hemmat A, Dehghan M A and Radjabalipour M 2000 Generalized frames and their redundancy Proc. Am. Math. Soc.129 1143–7 · Zbl 0976.42022 · doi:10.1090/S0002-9939-00-05689-6
[10] Balazs P 2007 Basic definition and properties of Bessel multipliers J. Math. Anal. Appl.325 571–85 · Zbl 1105.42023 · doi:10.1016/j.jmaa.2006.02.012
[11] Balazs P, Bayer D and Rahimi A 2012 Multipliers for continuous frames in Hilbert spaces J. Phys. A: Math. Theor.45 244023 · Zbl 1252.46008
[12] Balazs P, Dörfler M, Holighaus N, Jaillet F and Velasco G 2011 Theory, implementation and applications of nonstationary Gabor frames J. Comput. Appl. Math.236 1481–96 · Zbl 1236.94026 · doi:10.1016/j.cam.2011.09.011
[13] Balazs P, Dörfler M, Kowalski M and Torrésani B 2013 Adapted and adaptive linear time–frequency representations: a synthesis point of view IEEE Signal Process. Mag.30 20–31 (special issue: time–frequency analysis and applications) · doi:10.1109/MSP.2013.2266075
[14] Candès E J and Donoho D L 2005 Continuous curvelet transform: I. Resolution of the wavefront set Appl. Comput. Harmon. Anal.19 162–97 · Zbl 1086.42022 · doi:10.1016/j.acha.2005.02.003
[15] Casazza P G, Kutyniok G and Lammers M C 2004 Duality principles in frame theory J. Fourier Anal. Appl.10 383–408 · Zbl 1058.42020 · doi:10.1007/s00041-004-3024-7
[16] Christensen O 2003 An Introduction to Frames and Riesz Bases(Applied and Numerical Harmonic Analysis) (Basel: Birkhäuser) · doi:10.1007/978-0-8176-8224-8
[17] Christensen O and Eldar Y C 2005 Generalized shift-invariant systems and frames for subspaces J. Funct. Anal. Appl.11 299–313 · Zbl 1095.42024 · doi:10.1007/s00041-005-4030-0
[18] Christensen O and Goh S S 2014 From dual pairs of Gabor frames to dual pairs of wavelet frames and vice versa Appl. Comput. Harmon. Anal.36 198–214 · Zbl 1302.42047 · doi:10.1016/j.acha.2013.03.005
[19] Dahlke S, Fornasier M, Rauhut H, Steidl G and Teschke G 2008 Generalized coorbit theory, Banach frames, and the relation to &agr;-modulation spaces Proc. London Math. Soc.96 464–506 · Zbl 1215.42035 · doi:10.1112/plms/pdm051
[20] Dahlke S, Lorenz D, Maass P, Sagiv C and Teschke G 2008 The canonical coherent states associated with quotients of the affine Weyl–Heisenberg group J. Appl. Funct. Anal.3 215–32 · Zbl 1165.22007 · doi:10.1112/plms/pdm051
[21] Dahlke S and Teschke G 2008 Coorbit theory, multi-&agr;-modulation frames and the concept of joint sparsity for medical multi-channel data analysis EURASIP J. Adv. Signal Process.2008 471601 · Zbl 1184.94195 · doi:10.1155/2008/471601
[22] Daubechies I, Grossmann A and Meyer Y 1986 Painless non-orthogonal expansions J. Math. Phys.27 1271–83 · Zbl 0608.46014 · doi:10.1063/1.527388
[23] Duffin R J and Schaeffer A C 1952 A class of nonharmonic Fourier series Trans. Am. Math. Soc.72 341–66 · Zbl 0049.32401 · doi:10.1090/S0002-9947-1952-0047179-6
[24] Duflo M and Moore C C 1976 On the regular representation of a non-unimodular locally compact group J. Funct. Anal.21 209–43 · Zbl 0317.43013 · doi:10.1016/0022-1236(76)90079-3
[25] Duval-Destin M, Muschietti M A and Torrésani B 1993 Continuous wavelet decompositions, multiresolution, and contrast analysis SIAM J. Math. Anal.24 739–55 · Zbl 0770.41023 · doi:10.1137/0524045
[26] Feichtinger H G and Luef F 2006 Wiener amalgam spaces for the fundamental identity of Gabor analysis Collect. Math.57 233–53 (Extra Volume (2006)) · Zbl 1135.39303
[27] Feichtinger H G and Zimmermann G 1998 A Banach space of test functions for Gabor analysis Gabor Analysis and Algorithms–Theory and Applications ed H Feichtinger and T Strohmer (Cambridge, MA: Birkhäuser Boston) · Zbl 0890.42008 · doi:10.1007/978-1-4612-2016-9_4
[28] Folland G B 1995 A Course in Abstract Harmonic Analysis(Studies in Advanced Mathematics) (Boca Raton, FL: CRC Press)
[29] Fornasier M and Rauhut H 2005 Continuous frames, function spaces, and the discretization problem J. Fourier Anal. Appl.11 244–87 · Zbl 1093.42020 · doi:10.1007/s00041-005-4053-6
[30] Frazier M, Garrigós G, Wang K and Weiss G 1997 A characterization of functions that generate wavelet and related expansions J. Fourier Anal. Appl.3 883–906 · Zbl 0896.42022 · doi:10.1007/BF02656493
[31] Gröchenig K 2001 Foundations of Time-Frequency Analysis(Applied and Numerical Harmonic Analysis) (Boston: Birkhäuser) pp 293–309 · doi:10.1007/978-1-4612-0003-1
[32] Grossmann A, Morlet J and Paul T 1986 Transforms associated to square integrable group representations. Ann. Inst. Henri Poincaré45 · Zbl 0601.22001
[33] Hernandez E, Labate D and Weiss G 2002 A unified characterization of reproducing systems generated by a finite family: II J. Geom. Anal.12 615–62 · Zbl 1039.42032 · doi:10.1007/BF02930656
[34] Hogan J A and Lakey J D 1995 Extensions of the Heisenberg group by dilations and frames Appl. Comput. Harmon. Anal.2 174–99 · Zbl 0840.43017 · doi:10.1006/acha.1995.1013
[35] Jakobsen M S and Lemvig J 2014 Reproducing formulas for generalized translation invariant systems on locally compact abelian groups Trans. Am. Math. Soc. in press · Zbl 1348.42036
[36] Jia H F and Li Y Z 2015 Weak (quasi-)affine bi-frames for reducing subspaces of Sci. China Math.58 1005 · Zbl 1348.42038 · doi:10.1007/s11425-014-4906-z
[37] Kaiser G 1990 Quantum Physics, Relativity, and Complex Space–Time, Towards a New Synthesis (Amsterdam: North Holland) · Zbl 0709.53061
[38] Kaiser G 1994 Generalized frames: key to analysis and synthesis A Friendly Guide to Wavelets (Basel: Birkhäuser) ch 4, pp 78–98
[39] Kalisa C and Torrésani B 1993 n-dimensional affine Weyl–Heisenberg wavelets Ann. Inst. Henri Poincaré A 59 201–36 · Zbl 0923.43004
[40] Kutyniok G and Labate D 2012 Introduction to shearlets Shearlets: Multiscale Analysis for Multivariate Data(Applied and Numerical Harmonic Analysis) ed K G In and D Labate (Basel: Birkhäuser) ch 1, pp 1–36 · Zbl 1251.42010 · doi:10.1007/978-0-8176-8316-0_1
[41] Loomis L H 1953 An Introduction to Abstract Harmonic Analysis (New York: D. van Nostrand Company, Inc.)
[42] Mallat S 2009 A Wavelet Tour of Signal Processing–The Sparse Way 3rd edn (New York: Academic) · Zbl 1170.94003
[43] Necciari T, Balazs P, Holighaus N and Søndergaard P 2013 The ERBlet transform: an auditory-based time–frequency representation with perfect reconstruction In ICASSP 2013 · doi:10.1109/ICASSP.2013.6637697
[44] Perraudin N, Holighaus N, Soendergaard P and Balazs P 2013 Gabor dual windows using convex optimization Proc. 10th Int. Conf. on Sampling Theory and Applications (SAMPTA 2013)
[45] Phillips J 1975 A note on square-integrable representations J. Funct. Anal.20 83–92 · Zbl 0306.46070 · doi:10.1016/0022-1236(75)90054-3
[46] Rahimi A, Najati A and Dehghan Y N 2006 Continuous frames in Hilbert spaces Methods Funct. Anal. Topol.12 170–82 · Zbl 1120.42019
[47] Ron A and Shen Z 2005 Generalized shift invariant systems Constr. Approx.22 1–45 · Zbl 1080.42025 · doi:10.1007/s00365-004-0563-8
[48] Soendergaard P 2007 Gabor frames by sampling and periodization Adv. Comput. Math.27 355–73 Online first · Zbl 1123.42006 · doi:10.1007/s10444-005-9003-y
[49] Stoeva D T and Balazs P 2012 Invertibility of multipliers Appl. Comput. Harmon. Anal.33 292–9 · Zbl 1246.42017 · doi:10.1016/j.acha.2011.11.001
[50] Stoeva D T and Balazs P 2013 Canonical forms of unconditionally convergent multipliers J. Math. Anal. Appl.399 252–9 · Zbl 1259.42024 · doi:10.1016/j.jmaa.2012.10.007
[51] Stoeva D T and Balazs P 2013 Detailed characterization of conditions for the unconditional convergence and invertibility of multipliers Sampl. Theory Signal Image Process. (STSIP)12 87–126 · Zbl 1346.42044
[52] Stoeva D T and Balazs P 2015 Representation of the inverse of a frame multiplier J. Math. Anal. Appl.422 981–94 · Zbl 1301.42051 · doi:10.1016/j.jmaa.2014.09.020
[53] Teschke G 2001 Waveletkonstruktion über Unschärferelationen und Anwendungen in der Signalanalyse PhD Thesis Universität Bremen · Zbl 1003.42025
[54] Torrésani B 1991 Wavelets associated with representations of the Weyl–Heisenberg group J. Math. Phys.32 1273–9 · Zbl 0748.46046 · doi:10.1063/1.529325
[55] Torrésani B 1992 Time-frequency representations: wavelet packets and optimal decomposition Ann. Inst. Henri Poincaré2 215–34
[56] Weiss G, Frazier M, Garrigós G and Wang K 1997 A characterization of functions that generate wavelet and related expansion J. Fourier Anal. Appl. (Elektron. Ressour.)3 883–906 · Zbl 0896.42022 · doi:10.1007/BF02656493
[57] Weisz F 2013 Inversion formulas for the continuous wavelet transform Acta Math. Hung.138 237–58 · Zbl 1289.42096 · doi:10.1007/s10474-012-0263-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.