×

Bounding \(S(t)\) and \(S_1(t)\) on the Riemann hypothesis. (English) Zbl 1325.11084

We quote the authors’ perfect abstract: “Let \(\pi S(t)\) denote the argument of the Riemann zeta-function, \(\zeta(s)\), at the point \(s={1\over 2}+it\). Assuming the Riemann hypothesis, we present two proofs of the bound \[ |S(t)|\leq \left({1\over 4}+o(1)\right){{\log t}\over {\log \log t}} \] for large \(t\). This improves a result of D. A. Goldston and S. M. Gonek [Bull. Lond. Math. Soc. 39, No. 3, 482–486 (2007; Zbl 1127.11058)] by a factor of \(2\). The first method consists of bounding the auxiliary function \(S_1(t)=\int_{0}^{t}S(u)\,du\) using extremal functions constructed by E. Carneiro et al. [Trans. Am. Math. Soc. 365, No. 7, 3493–3534 (2013; Zbl 1276.41018)]. We then relate the size of \(S(t)\) to the size of the functions \(S_1(t\pm h)-S_1(t)\) when \(h\asymp 1/\log \log t\). The alternative approach bounds \(S(t)\) directly, relying on the solution of the Beurling–Selberg extremal problem for the odd function \(f(x)=\arctan\left({1\over x}\right)-{x\over {1+x^2}}\). This draws upon recent work by E. Carneiro and F. Littmann [Constr. Approx. 38, No. 1, 19–57 (2013; Zbl 1280.41018)].”

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
41A30 Approximation by other special function classes

References:

[1] Barton, J.T., Montgomery, H.L., Vaaler, J.D.: Note on a Diophantine inequality in several variables. Proc. Am. Math. Soc. 129, 337-345 (2001) · Zbl 0963.11039 · doi:10.1090/S0002-9939-00-05795-6
[2] Carneiro, E., Chandee, V.: Bounding \[\zeta (s)\] in the critical strip. J. Number Theory 131, 363-384 (2011) · Zbl 1231.11097 · doi:10.1016/j.jnt.2010.08.002
[3] Carneiro, E., Littmann, F.: Bandlimited approximations to the truncated Gaussian and applications. Constr. Approx. Preprint at http://arxiv.org/abs/1106.0567 · Zbl 1280.41018
[4] Carneiro, E., Littmann, F., Vaaler, J.D.: Gaussian subordination for the Beurling-Selberg extremal problem. Trans. Am. Math. Soc. (2012, in press). http://arxiv.org/abs/1008.4969 · Zbl 1276.41018
[5] Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, II. Trans. Am. Math. Soc. 362, 5803-5843 (2010) · Zbl 1207.41013 · doi:10.1090/S0002-9947-2010-04886-X
[6] Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, III. Constr. Approx. 31(2), 259-288 (2010) · Zbl 1183.41020 · doi:10.1007/s00365-009-9050-6
[7] Chandee, V., Soundararajan, K.: Bounding \[|\zeta (\frac{1}{2}+it)|\] on the Riemann hypothesis. Bull. Lond. Math. Soc. 43(2), 243-250 (2011) · Zbl 1238.11078 · doi:10.1112/blms/bdq095
[8] Davenport, H.: Multiplicative number theory. Graduate Texts in Mathematics, vol. 74, 3rd edn. Springer, New York (2000) · Zbl 1002.11001
[9] Farmer, D.W., Gonek, S.M., Hughes, C.P.: The maximum size of L-functions. J. Reine Angew. Math. 609, 215-236 (2007) · Zbl 1234.11109
[10] Fujii, A.: A note of the distribution of the argument of the Riemann zeta function. Comment. Math. Univ. St. Pauli 55(2), 135-147 (2006) · Zbl 1157.11035
[11] Ghosh, A.: On Riemann’s zeta function—sign changes of \[S(t)\]. Recent Progress in Analytic Number Theory, vol. 1. Academic Press, New York (1981) · Zbl 0457.10018
[12] Goldston, D.A., Gonek, S.M.: A note on \[S(t)\] and the zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 39(3), 482-486 (2007) · Zbl 1127.11058 · doi:10.1112/blms/bdm032
[13] Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th edn. Elsevier, Amsterdam (2007). Translated from Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger · Zbl 1208.65001
[14] Graham, S.W., Vaaler, J.D.: A class of extremal functions for the Fourier transform. Trans. Am. Math. Soc. 265, 283-382 (1981) · Zbl 0483.42007 · doi:10.1090/S0002-9947-1981-0607121-1
[15] Holt, J., Vaaler, J.D.: The Beurling-Selberg extremal functions for a ball in the Euclidean space. Duke Math. J. 83, 203-247 (1996) · Zbl 0859.30029 · doi:10.1215/S0012-7094-96-08309-X
[16] Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications (2004) · Zbl 1059.11001
[17] Karatsuba, A.A., Korolëv, M.A.: The argument of the Riemann zeta function. Rus. Math. Surveys 60(3), 433-488 (2005) (in English) · Zbl 1116.11070
[18] Karatsuba, A.A., Korolëv, M.A.: The argument of the Riemann zeta function. Uspekhi Mat. Nauk 60(3), 41-96 (2005) (in Russian) · Zbl 1207.41013
[19] Krein, M.G.: On the best approximation of continuous differentiable functions on the whole real axis. Dokl. Akad. Nauk SSSR 18, 615-624 (1938) (in Russian) · Zbl 0061.08402
[20] Li, X.J., Vaaler, J.D.: Some trigonometric extremal functions and the Erdös-Turán type inequalities. Indiana Univ. Math. J. 48(1), 183-236 (1999) · Zbl 0930.42001 · doi:10.1512/iumj.1999.48.1508
[21] Littlewood, J.E.: On the zeros of the Riemann zeta-function. Proc. Camb. Philos. Soc. 22, 295-318 (1924) · JFM 50.0230.02 · doi:10.1017/S0305004100014225
[22] Littmann, F.: Entire majorants via Euler-Maclaurin summation. Trans. Am. Math. Soc. 358(7), 2821-2836 (2006) · Zbl 1091.42002 · doi:10.1090/S0002-9947-06-04121-3
[23] Littmann, F.: Entire approximations to the truncated powers. Constr. Approx. 22(2), 273-295 (2005) · Zbl 1099.41006 · doi:10.1007/s00365-004-0586-1
[24] Ramachandra, K., Sankaranarayanan, A.: On some theorems of Littlewood and Selberg. I. J. Number Theory 44, 281-291 (1993) · Zbl 0778.11047 · doi:10.1006/jnth.1993.1054
[25] Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid. B 48, 89-155 (1946) · Zbl 0061.08402
[26] Selberg, A.: Lectures on Sieves. Atle Selberg: Collected Papers, vol. II, pp 65-247. Springer, Berlin, Atle Selberg (1991) · Zbl 0729.11001
[27] Sz.Nagy, B.: Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen II. Ber. Math. Phys. Kl. Sächs. Akad. Wiss, Leipzig 91 (1939) · JFM 65.0272.01
[28] Titchmarsh, E.C.: The theory of the Riemann zeta-function, 2nd edn. Oxford University Press, New York (1986) (edited and with a preface by D.R. Health-Brown) · Zbl 0601.10026
[29] Tsang, K.-M.: Some \[\Omega \]-theorems for the Riemann zeta-function. Acta Arith. 46(4), 369-395 (1986) · Zbl 0606.10031
[30] Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. 12, 183-215 (1985) · Zbl 0575.42003 · doi:10.1090/S0273-0979-1985-15349-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.