×

Bandlimited approximations to the truncated Gaussian and applications. (English) Zbl 1280.41018

The authors find the explicit solutions of the best \( L^1(\mathbb{R}) \) (unrestricted and one-sided) approximation problems by entire functions of exponential type of at most \( \pi \) of the truncated and the odd Gaussians \[ G_{\lambda}^+(x)=x_+^0e^{-\pi\lambda x^2},\quad G_{\lambda}^o(x)=\mathrm{sign}(x)e^{-\pi\lambda x^2}. \] For example, the best \( L^1(\mathbb{R}) \) approximation of \(G_{\lambda}^+ \) is \[ K_{\lambda}^+(z)=\frac{\sin\pi z}{\pi}\sum_{n=1}^{\infty}(-1)^n\left\{\frac{G_{\lambda}^+(n)}{z-n}-\frac{G_{\lambda}^+(n)}{n}\right\}. \] The second part of the paper is devoted to the integration on the free parameter \( \lambda \) as a tool to generate the solution of these best approximation problems for a class of truncated and odd functions.

MSC:

41A30 Approximation by other special function classes
42A82 Positive definite functions in one variable harmonic analysis
30D10 Representations of entire functions of one complex variable by series and integrals
41A29 Approximation with constraints

References:

[1] Barton, J.T., Montgomery, H.L., Vaaler, J.D.: Note on a Diophantine inequality in several variables. Proc. Am. Math. Soc. 129, 337-345 (2001) · Zbl 0963.11039 · doi:10.1090/S0002-9939-00-05795-6
[2] Carneiro, E.: Sharp approximations to the Bernoulli periodic functions by trigonometric polynomials. J. Approx. Theory 154, 90-104 (2008) · Zbl 1221.42002 · doi:10.1016/j.jat.2008.03.007
[3] Carneiro, E., Chandee, V.: Bounding ζ(s) in the critical strip. J. Number Theory 131, 363-384 (2011) · Zbl 1231.11097 · doi:10.1016/j.jnt.2010.08.002
[4] Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, II. Trans. Am. Math. Soc. 362, 5803-5843 (2010) · Zbl 1207.41013 · doi:10.1090/S0002-9947-2010-04886-X
[5] Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, III. Constr. Approx. 31(2), 259-288 (2010) · Zbl 1183.41020 · doi:10.1007/s00365-009-9050-6
[6] Carneiro, E., Chandee, V., Milinovich, M.: Bounding S(t) and S1(t) on the Riemann hypothesis. Math. Ann. (2012). doi:10.1007/s00208-012-0876-z · Zbl 1325.11084 · doi:10.1007/s00208-012-0876-z
[7] Carneiro, E., Littmann, F., Vaaler, J.D.: Gaussian subordination for the Beurling-Selberg extremal problem. Trans. Am. Math. Soc. (2012, to appear) · Zbl 1276.41018
[8] Chandee, V., Soundararajan, K.: Bounding |ζ(1/2+it)| on the Riemann hypothesis. Bull. Lond. Math. Soc. 43, 243-250 (2011) · Zbl 1238.11078 · doi:10.1112/blms/bdq095
[9] Chandrasekharan, K.: Elliptic Functions. Springer, Berlin (1985) · Zbl 0575.33001
[10] Ganzburg, M. I., Criteria for best approximation of locally integrable functions in L(ℝ), 11-16 (1983), Dnepropetrovsk
[11] Ganzburg, M. I., Limit theorems and best constants in approximation theory, 507-569 (2000), Boca Raton · Zbl 0968.41012
[12] Ganzburg, M.I.: L-approximation to non-periodic functions. J. Concr. Appl. Math. 8(2), 208-215 (2010) · Zbl 1197.41024
[13] Ganzburg, M. I.; Lubinsky, D. S., Best approximating entire functions to |x|α in L2, No. 455, 93-107 (2008), Providence · Zbl 1153.41310 · doi:10.1090/conm/455/08849
[14] Goldston, D.A., Gonek, S.M.: A note on S(t) and the zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 39, 482-486 (2007) · Zbl 1127.11058 · doi:10.1112/blms/bdm032
[15] Graham, S.W., Vaaler, J.D.: A class of extremal functions for the Fourier transform. Trans. Am. Math. Soc. 265, 283-382 (1981) · Zbl 0483.42007 · doi:10.1090/S0002-9947-1981-0607121-1
[16] Holt, J., Vaaler, J.D.: The Beurling-Selberg extremal functions for a ball in the Euclidean space. Duke Math. J. 83, 203-247 (1996) · Zbl 0859.30029 · doi:10.1215/S0012-7094-96-08309-X
[17] Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer, New York (1990) · Zbl 0712.35001 · doi:10.1007/978-3-642-61497-2
[18] Krein, M.G.: On the best approximation of continuous differentiable functions on the whole real axis. Dokl. Akad. Nauk SSSR 18, 615-624 (1938) (Russian)
[19] Li, X.J., Vaaler, J.D.: Some trigonometric extremal functions and the Erdös-Turán type inequalities. Indiana Univ. Math. J. 48(1), 183-236 (1999) · Zbl 0930.42001 · doi:10.1512/iumj.1999.48.1508
[20] Littmann, F.: Entire approximations to the truncated powers. Constr. Approx. 22(2), 273-295 (2005) · Zbl 1099.41006 · doi:10.1007/s00365-004-0586-1
[21] Littmann, F.: One-sided approximation by entire functions. J. Approx. Theory 141(1), 1-7 (2006) · Zbl 1130.41007 · doi:10.1016/j.jat.2005.12.003
[22] Littmann, F.: Entire majorants via Euler-Maclaurin summation. Trans. Am. Math. Soc. 358(7), 2821-2836 (2006) · Zbl 1091.42002 · doi:10.1090/S0002-9947-06-04121-3
[23] Littmann, F.: Zeros of Bernoulli-type functions and best approximations. J. Approx. Theory 161(1), 213-225 (2009) · Zbl 1179.41020 · doi:10.1016/j.jat.2008.08.019
[24] Montgomery, H.L.: The analytic principle of the large sieve. Bull. Am. Math. Soc. 84(4), 547-567 (1978) · Zbl 0408.10033 · doi:10.1090/S0002-9904-1978-14497-8
[25] Montgomery, H.L., Vaughan, R.C.: Hilbert’s inequality. J. Lond. Math. Soc. (2) 8, 73-81 (1974) · Zbl 0281.10021 · doi:10.1112/jlms/s2-8.1.73
[26] Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967) · Zbl 0153.13602
[27] Selberg, A., Lectures on sieves, No. II, 65-247 (1991), Berlin
[28] Shapiro, H.S.: Topics in Approximation Theory. Lecture Notes in Mathematics, vol. 187. Springer, Berlin (1971) · Zbl 0213.08501
[29] Sz.-Nagy, B.: Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen II. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 91 (1939) · JFM 65.0272.01
[30] Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. 12, 183-215 (1985) · Zbl 0575.42003 · doi:10.1090/S0273-0979-1985-15349-2
[31] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927) · JFM 45.0433.02
[32] Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959) · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.