×

On the Ramanujan conjecture over number fields. (English) Zbl 1322.11039

This article gives bounds towards the Ramanujan (or Ramanunan-Petersson/Selberg) Conjecture that hold for a cuspidal automorphic representation on the general linear groups \(\mathrm{GL}_2\), \(\mathrm{GL}_3\), \(\mathrm{GL}_4\) over an arbitrary number field.
Let \(K\) be a number field with ring of adeles \(\mathbb{A}_K\), and let \(\pi\) be an irreducible cuspidal automorphic representation of \(\mathrm{GL}_n(\mathbb{A}_K)\) with unitary central character. Write \(\pi\cong \otimes'_v \pi_v\) with \(\pi_v\) an irreducible unitary generic representation of \(\mathrm{GL}_n(K_v)\), where \(v\) runs over the places of \(K\). The Ramanujan conjecture asserts that each \(\pi_v\) is tempered. If not then \(\pi_v\) is parabolically induced from a standard parabolic subgroup with Levi factor \(M\cong \mathrm{GL}_{n_1}(K_v)\times \cdots \times \mathrm{GL}_{n_r}(K_v)\) and a representation \(\tau[\sigma]=\tau_1[\sigma_\pi(v,1)]\otimes\cdots\otimes \tau_r[\sigma_\pi(v,r)]\) of \(M\), where each \(\tau_i\) is a tempered irreducible representation of \(\mathrm{GL}_{n_i}(K_v)\) and \(\tau[\sigma]\) denotes the twist of \(\tau\) by \(|\det g|_v^\sigma\). Let \(m(\pi,v)\) denote \(\max_j|\sigma_{\pi}(v,j)|\) if \(\pi_v\) is not tempered and \(0\) otherwise.
Let \(H_n(\delta)\) be the statement that for any number field \(K\) and any irreducible cuspidal automorphic representation \(\pi\) of \(\mathrm{GL}_n(\mathbb{A}_K)\) with unitary central character, one has \(m(\pi,v)\leq \delta\) for all places \(v\) of \(K\). The best general bound, due to W. Luo et al. [Proc. Symp. Pure Math. 66, 301–310 (1999; Zbl 0965.11023)] is \(H_n(1/2-1/(n^2+1))\), while H. H. Kim and F. Shahidi established \(H_2(1/9)\) [Duke Math. J. 112, No. 1, 177–197 (2002; Zbl 1074.11027)]. The authors’ principal result is that the statements \(H_2(7/64)\), \(H_3(5/14)\) and \(H_4(9/22)\) hold. As a corollary, the authors observe that their result gives an improvement on the subconvexity bound for the central value of the \(\mathrm{GL}_2\) standard \(L\)-function in twisted aspect. The authors’ main result is an improvement over existing bounds for all fields other than \(\mathbb{Q}\) and imaginary quadratic fields (for example, the bound \(7/64\) was established for \(\mathbb{Q}\) by Kim and Sarnak [Appendix 2 to H. H. Kim, J. Am. Math. Soc. 16, No. 1, 139–183 (2003; Zbl 1018.11024)]).
To establish their main result, the authors show that if \(\pi\) is an irreducible cuspidal automorphic representation of \(\mathrm{GL}_n(\mathbb{A})\) with unitary central character such that \(L(s,\pi,\text{Sym}^2)\) converges absolutely for \(\mathrm{Re}(s)>1\), then \(m(\pi,v)\leq 1/2-2/n(n+1)\). The main result follows from this statement as in Kim-Sarnak [loc. cit.], which uses the approach of W. Duke and H. Iwaniec [in: Automorphic forms and analytic number theory, Proc. Conf., Montréal/Can. 1989, 43–47 (1990; Zbl 0745.11030)] for determining information about the coefficients of a Dirichlet series from its properties under twisting. The obstruction to applying prior methods for a general number field \(K\) is that when the group of units \(\mathcal{O}_K^\times\) in the ring of integers \(\mathcal{O}_K\) is infinite, for a general ideal \(\mathcal{M}\) the image of \(\mathcal{O}_K^\times\) in \((\mathcal{O_K}/\mathcal{M})^\times\) is frequently all of \((\mathcal{O_K}/\mathcal{M})^\times\). The authors overcome this by introducing a test function on ideals that takes into account not only residue classes modulo an ideal but also certain Archimedean information.

MSC:

11F30 Fourier coefficients of automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings

References:

[1] V. Blomer and G. Harcos, ”Twisted \(L\)-functions over number fields and Hilbert’s eleventh problem,” Geom. Funct. Anal., vol. 20, iss. 1, pp. 1-52, 2010. · Zbl 1221.11121 · doi:10.1007/s00039-010-0063-x
[2] R. W. Bruggeman and R. J. Miatello, ”Sum formula for \({ SL}_2\) over a number field and Selberg type estimate for exceptional eigenvalues,” Geom. Funct. Anal., vol. 8, iss. 4, pp. 627-655, 1998. · Zbl 0924.11039 · doi:10.1007/s000390050069
[3] D. Bump and D. Ginzburg, ”Symmetric square \(L\)-functions on \({ GL}(r)\),” Ann. of Math., vol. 136, iss. 1, pp. 137-205, 1992. · Zbl 0753.11021 · doi:10.2307/2946548
[4] P. Deligne, ”La conjecture de Weil. I,” Inst. Hautes Études Sci. Publ. Math., iss. 43, pp. 273-307, 1974. · Zbl 0287.14001 · doi:10.1007/BF02684373
[5] P. Deligne, Cohomologie Étale, New York: Springer-Verlag, 1977, vol. 569. · Zbl 0349.14008
[6] W. Duke and H. Iwaniec, ”Estimates for coefficients of \(L\)-functions. I,” in Automorphic forms and analytic number theory (Montreal, PQ, 1989), Montreal, QC: Univ. Montréal, 1990, pp. 43-47. · Zbl 0745.11030
[7] S. Gelbart and F. Shahidi, ”Boundedness of automorphic \(L\)-functions in vertical strips,” J. Amer. Math. Soc., vol. 14, iss. 1, pp. 79-107, 2001. · Zbl 1050.11053 · doi:10.1090/S0894-0347-00-00351-9
[8] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Princeton, NJ: Princeton Univ. Press, 2001, vol. 151. · Zbl 1036.11027 · doi:10.1515/9781400837205
[9] H. Iwaniec, ”The lowest eigenvalue for congruence groups,” in Topics in Geometry, Boston, MA: Birkhäuser, 1996, vol. 20, pp. 203-212. · Zbl 0884.11024
[10] H. Jacquet and J. A. Shalika, ”On Euler products and the classification of automorphic representations. I,” Amer. J. Math., vol. 103, iss. 3, pp. 499-558, 1981. · Zbl 0473.12008 · doi:10.2307/2374103
[11] H. H. Kim, ”Langlands-Shahidi method and poles of automorphic \(L\)-functions: application to exterior square \(L\)-functions,” Canad. J. Math., vol. 51, iss. 4, pp. 835-849, 1999. · Zbl 0934.11024 · doi:10.4153/CJM-1999-036-0
[12] H. H. Kim and P. Sarnak, ”Refined estimates towards the Ramanujan and Selberg conjectures,” J. Amer. Math. Soc., vol. 16, iss. 1, pp. 139-183, 2003. · Zbl 1018.11024 · doi:10.1090/S0894-0347-02-00410-1
[13] H. H. Kim and F. Shahidi, ”Cuspidality of symmetric powers with applications,” Duke Math. J., vol. 112, iss. 1, pp. 177-197, 2002. · Zbl 1074.11027 · doi:10.1215/S0012-9074-02-11215-0
[14] W. Luo, Z. Rudnick, and P. Sarnak, ”On Selberg’s eigenvalue conjecture,” Geom. Funct. Anal., vol. 5, iss. 2, pp. 387-401, 1995. · Zbl 0844.11038 · doi:10.1007/BF01895672
[15] W. Luo, Z. Rudnick, and P. Sarnak, ”On the generalized Ramanujan conjecture for \({ GL}(n)\),” in Automorphic Forms, Automorphic Representations, and Arithmetic, Providence, RI, 1999, pp. 301-310. · Zbl 0965.11023
[16] W. Müller and B. Speh, ”Absolute convergence of the spectral side of the Arthur trace formula for \({ GL}_n\),” Geom. Funct. Anal., vol. 14, iss. 1, pp. 58-93, 2004. · Zbl 1083.11031 · doi:10.1007/s00039-004-0452-0
[17] W. Narkiewicz, ”Units in residue classes,” Arch. Math. \((\)Basel\()\), vol. 51, iss. 3, pp. 238-241, 1988. · Zbl 0641.12004 · doi:10.1007/BF01207477
[18] M. Nakasuji, Generalized Ramanujan conjecture over general imaginary quadratic fields. · Zbl 1257.11052 · doi:10.1515/form.2011.050
[19] S. Ramanujan, ”On certain Arithmetical Functions,” Trans. Cambridge Phil. Soc., vol. 22, pp. 159-184, 1916.
[20] D. E. Rohrlich, ”Nonvanishing of \(L\)-functions for \({ GL}(2)\),” Invent. Math., vol. 97, iss. 2, pp. 381-403, 1989. · Zbl 0677.10020 · doi:10.1007/BF01389047
[21] Z. Rudnick and P. Sarnak, ”Zeros of principal \(L\)-functions and random matrix theory,” Duke Math. J., vol. 81, iss. 2, pp. 269-322, 1996. · Zbl 0866.11050 · doi:10.1215/S0012-7094-96-08115-6
[22] F. Shahidi, ”On certain \(L\)-functions,” Amer. J. Math., vol. 103, iss. 2, pp. 297-355, 1981. · Zbl 0467.12013 · doi:10.2307/2374219
[23] F. Shahidi, ”Local coefficients as Artin factors for real groups,” Duke Math. J., vol. 52, iss. 4, pp. 973-1007, 1985. · Zbl 0674.10027 · doi:10.1215/S0012-7094-85-05252-4
[24] F. Shahidi, ”A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p\)-adic groups,” Ann. of Math., vol. 132, iss. 2, pp. 273-330, 1990. · Zbl 0780.22005 · doi:10.2307/1971524
[25] F. Shahidi, ”Twisted endoscopy and reducibility of induced representations for \(p\)-adic groups,” Duke Math. J., vol. 66, iss. 1, pp. 1-41, 1992. · Zbl 0785.22022 · doi:10.1215/S0012-7094-92-06601-4
[26] F. Shahidi, ”On the Ramanujan conjecture and finiteness of poles for certain \(L\)-functions,” Ann. of Math., vol. 127, iss. 3, pp. 547-584, 1988. · Zbl 0654.10029 · doi:10.2307/2007005
[27] S. Takeda, The twisted symmetric square \(L\)-function of GL(\(r\)). · Zbl 1316.11037 · doi:10.1215/00127094-2405497
[28] A. Weil, Basic Number Theory, New York: Springer-Verlag, 1967, vol. 144. · Zbl 0176.33601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.