×

The exponentiated Hencky-logarithmic strain energy. II: Coercivity, planar polyconvexity and existence of minimizers. (English) Zbl 1320.74022

Summary: We consider a family of isotropic volumetric-isochoric decoupled strain energies \[ F \mapsto W_{\mathrm{eH}}(F):=\widehat{W}_{\mathrm{eH}}(U):=\begin{cases}\frac{\mu}{k}e^{k\,\|\operatorname{dev}_n\log U\|^2}+\frac{\kappa}{2\hat{k}}e^{\hat{k}[\mathrm{tr}(\log U)]^2}\quad &\text{if det }F > 0,\\ +\infty\quad &\text{if det } F\leq 0,\end{cases} \] based on the Hencky-logarithmic (true, natural) strain tensor \(\log U\), where \(\mu >0\) is the infinitesimal shear modulus, \(\kappa=\frac{2\mu+3\lambda}{3} > 0\) is the infinitesimal bulk modulus with \(\lambda\) the first Lamé constant, \(k\), \(\hat{k}\) are dimensionless parameters, \(F=\nabla \varphi\) is the gradient of deformation, \(U=\sqrt{F^T F}\) is the right stretch tensor and \(\operatorname{dev}_n\log U =\log U-\frac{1}{n}\mathrm{tr}(\log U)\cdot 11\) is the deviatoric part (the projection onto the traceless tensors) of the strain tensor \(\log U\). For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy \[ F\mapsto W_{\mathrm{H}}(F):=\widehat{W}_{\mathrm{H}}(U) :=\mu \|\operatorname{dev}_n\log U\|^2+\frac{\kappa}{2} [\mathrm{tr}(\log U)]^2, \] which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family \(W_{\mathrm{eH}}\) are polyconvex for \(k\geq \frac{1}{3}\), \(\widehat{k}\geq \frac{1}{8}\), extending a previous finding on its rank-one convexity [A. S. Lewis, Math. Program. 97, No. 1–2 (B), 155–176 (2003; Zbl 1035.90085)]. Our method uses a judicious application of Steigmann’s polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor \(U\). These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

MSC:

74B20 Nonlinear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
35E10 Convexity properties of solutions to PDEs with constant coefficients

Citations:

Zbl 1035.90085

References:

[1] Ball J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Knops, R.J. (eds) Herriot Watt Symposion: Nonlinear Analysis and Mechanics., volume 1, pp. 187-238. Pitman, London (1977) · Zbl 0377.73043
[2] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337-403 (1977) · Zbl 0368.73040 · doi:10.1007/BF00279992
[3] Ball J.M. et al.: Some open problems in elasticity. In: Newton, P. (eds) Geometry, Mechanics, and Dynamics, pp. 3-59. Springer, New-York (2002) · Zbl 1054.74008
[4] Balzani D., Neff P., Schröder J., Holzapfel G.A.: A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43(20), 6052-6070 (2006) · Zbl 1120.74632 · doi:10.1016/j.ijsolstr.2005.07.048
[5] Bîrsan M., Neff P., Lankeit J.: Sum of squared logarithms: an inequality relating positive definite matrices and their matrix logarithm. J. Inequal. Appl. 2013(1), 168 (2013) · Zbl 1284.26019 · doi:10.1186/1029-242X-2013-168
[6] Borwein J.M., Vanderwerff J.D.: Convex Functions. Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010) · Zbl 1191.26001 · doi:10.1017/CBO9781139087322
[7] Bruhns O.T., Xiao H., Mayers A.: Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207-2226 (2001) · Zbl 1048.74505 · doi:10.1098/rspa.2001.0818
[8] Bruhns O.T., Xiao H., Mayers A.: Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66(3), 237-256 (2002) · Zbl 1078.74517 · doi:10.1023/A:1021959329598
[9] Busemann H., Ewald G., Shephard G.C.: Convex bodies and convexity on Grassmann cones. I-IV. Math. Ann. 151, 1-14 (1963) · Zbl 0112.37301 · doi:10.1007/BF01343323
[10] Chen Y.C.: Stability and bifurcation of homogeneous deformations of a compressible elastic body under pressure load. Math. Mech. Solids 1(1), 57-72 (1996) · Zbl 1001.74562
[11] Dacorogna B.: Direct Methods in the Calculus of Variations, volume 78 of Applied Mathematical Sciences, 2 edn. Springer, Berlin (2008) · Zbl 1140.49001
[12] Dacorogna B., Douchet J., Gangbo W., Rappaz J.: Some examples of rank-one convex functions in dimension two. Proc. R. Soc. Edinb. Sect. A Math. 114(1-2), 135-150 (1990) · Zbl 0722.49018 · doi:10.1017/S0308210500024318
[13] Dacorogna B., Koshigoe H.: On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse 2, 163-184 (1993) · Zbl 0828.49016 · doi:10.5802/afst.762
[14] Dacorogna B., Marcellini P.: Implicit Partial Differential Equations. Birkhäuser, Boston (1999) · Zbl 0938.35002 · doi:10.1007/978-1-4612-1562-2
[15] Dacorogna B., Maréchal P. et al.: A note on spectrally defined polyconvex functions. In: Carozza, M. (eds) Proceedings of the Workshop “New Developments in the calculus of variations”, pp. 27-54. Edizioni Scientifiche Italiane, Napoli (2006) · Zbl 1052.74012
[16] Davis C.: All convex invariant functions of hermitian matrices. Arch. Math. 8, 276-278 (1957) · Zbl 0086.01702 · doi:10.1007/BF01898787
[17] Hartmann S., Neff P.: Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near incompressibility. Int. J. Solids Struct. 40(11), 2767-2791 (2003) · Zbl 1051.74539 · doi:10.1016/S0020-7683(03)00086-6
[18] Henann D.L., Anand L.: A large strain isotropic elasticity model based on molecular dynamics simulations of a metallic glass. J. Elast. 104(1-2), 281-302 (2011) · Zbl 1295.74011 · doi:10.1007/s10659-010-9297-y
[19] Hencky H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Physik 9, 215-220, http://www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky1928(see also the technical translation NASA TT-21602), (1928) · JFM 54.0851.03
[20] Hencky H.: Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form. Ann. der Physik, 2, 617-630, http://www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky_superposition1929, (1929) · JFM 55.1106.04
[21] Hencky H.: Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern? Z. Phys. 55, 145-155, http://www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky1929, (1929) · JFM 55.1107.01
[22] Hencky H.: The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. J. Rheol. 2, 169-176, http://www.uni-due.de/imperia/md/content/mathematik/ag_neff/henckyjrheology31, (1931)
[23] Lankeit J., Neff P., Nakatsukasa Y.: The minimization of matrix logarithms: On a fundamental property of the unitary polar factor. Linear Alg. Appl. 449(0), 28-42 (2014) · Zbl 1302.15009 · doi:10.1016/j.laa.2014.02.012
[24] Lewis A.S.: Convex analysis on the Hermitian matrices. SIAM J. Optim. 6(1), 164-177 (1996) · Zbl 0849.15013 · doi:10.1137/0806009
[25] Lewis A.S.: The mathematics of eigenvalue optimization. Math. Program. 97(1-2 (B)), 155-176 (2003) · Zbl 1035.90085
[26] Lewis, A.S., Overton M.L.: Eigenvalue optimization. In: Acta Numerica, Vol. 5, pp. 149-190. Cambridge University Press, Cambridge (1996) · Zbl 0870.65047
[27] Mielke A.: Necessary and suffcient conditions for polyconvexity of isotropic functions. J. Conv. Anal. 12(2), 291-314 (2005) · Zbl 1098.49013
[28] Neff P.: Mathematische Analyse multiplikativer Viskoplastizität. Ph.D. thesis, Technische Universität Darmstadt. Shaker Verlag, ISBN:3-8265-7560-1, http://www.uni-due.de/ hm0014/Download_files/cism_convexity08, Aachen, (2000) · Zbl 0970.74002
[29] Neff P., Eidel B., Osterbrink F., Martin R.: A Riemannian approach to strain measures in nonlinear elasticity. C. R. Acad. Sci. 342, 254-257 (2014)
[30] Neff, P., Eidel, B., Martin R.: Geometry, solid mechanics and logarithmic strain measures. The Hencky energy is the squared geodesic distance of the deformation gradient to SO(n) in any left-invariant, right-O(n)-invariant Riemannian metric on GL(n). in preparation (2015)
[31] Neff, P., Ghiba, I.D.: The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity. Preprint arXiv:1409.7555, special issue in honour of D.J. Steigmann, Cont. Mech. Thermodyn. (to appear, 2015) · Zbl 1325.74028
[32] Neff, P., Ghiba, I.D., Lankeit J.: The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity. J. Elasticity (to appear, 2015) · Zbl 1325.74028
[33] Neff P., Nakatsukasa Y., Fischle A.: A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm. SIAM J. Matrix Anal. 35, 1132-1154 (2014) · Zbl 1309.15016 · doi:10.1137/130909949
[34] Ogden R.W.: Non-linear Elastic Deformations. Mathematics and Its Applications, 1st edn. Ellis Horwood, Chichester (1983)
[35] Pipkin A.C.: Convexity conditions for strain-dependent energy functions for membranes. Arch. Rat. Mech. Anal. 121(4), 361-376 (1993) · Zbl 0768.73038 · doi:10.1007/BF00375626
[36] Rosakis P.: Characterization of convex isotropic functions. J. Elast. 49, 257-267 (1998) · Zbl 0906.73018 · doi:10.1023/A:1007468902439
[37] Rosakis P., Simpson H.: On the relation between polyconvexity and rank-one convexity in nonlinear elasticity. J. Elast. 37, 113-137 (1995) · Zbl 0817.73009 · doi:10.1007/BF00040941
[38] Schröder J., Neff P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40(2), 401-445 (2003) · Zbl 1033.74005 · doi:10.1016/S0020-7683(02)00458-4
[39] Schröder J., Neff P., Balzani D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42(15), 4352-4371 (2005) · Zbl 1119.74321 · doi:10.1016/j.ijsolstr.2004.11.021
[40] Schröder J., Neff P., Ebbing V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56(12), 3486-3506 (2008) · Zbl 1171.74356 · doi:10.1016/j.jmps.2008.08.008
[41] Šilhavý M.: The Mechanics and Thermomechanics of Continuous Media. Springer, Berlin (1997) · Zbl 0870.73004
[42] Šilhavý M. et al.: Convexity conditions for rotationally invariant functions in two dimensions. In: Sequeira, (eds) Applied Nonlinear Analysis, Kluwer Academic Publisher, New-York (1999) · Zbl 0959.26008
[43] Šilhavý M.: On isotropic rank one convex functions. Proc. R. Soc. Edinb. 129, 1081-1105 (1999) · Zbl 0945.26018 · doi:10.1017/S0308210500031085
[44] Šilhavý M.: Rank 1 convex hulls of isotropic functions in dimension 2 by 2. Math. Bohemica 126(2), 521-529 (2001) · Zbl 1070.49008
[45] Šilhavý M.: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. R. Soc. Edinb. 132(2), 419-435 (2002) · Zbl 1035.49006 · doi:10.1017/S0308210500001712
[46] Šilhavý M.: An O(n) invariant rank 1 convex function that is not polyconvex. Theoret. Appl. Mech. 28, 325-336 (2002) · Zbl 1055.26006
[47] Šilhavý M.: On SO(n)-invariant rank 1 convex functions. J. Elast. 71, 235-246 (2003) · Zbl 1077.49021 · doi:10.1023/B:ELAS.0000005544.24267.8d
[48] Steigmann D.: Tension-field theory. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 429(1876), 141-173 (1990) · Zbl 0735.73033 · doi:10.1098/rspa.1990.0055
[49] Steigmann D.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8(5), 497-506 (2003) · Zbl 1052.74012 · doi:10.1177/10812865030085004
[50] Steigmann D.: On isotropic, frame-invariant, polyconvex strain-energy functions. Q. J. Mech. Appl. Math. 56(4), 483-491 (2003) · Zbl 1085.74009 · doi:10.1093/qjmam/56.4.483
[51] Templet G.J., Steigmann D.J.: On the theory of diffusion and swelling in finitely deforming elastomers. Math. Mech. Complex Syst. 1, 105-128 (2013) · Zbl 1381.74185 · doi:10.2140/memocs.2013.1.105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.