×

Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces. (English) Zbl 1319.91025

Summary: This paper studies the existence of pure-strategy Nash equilibria for nonatomic games where players take actions in infinite-dimensional Banach spaces. For any infinite-dimensional Banach space, if the player space is modeled by the Lebesgue unit interval, we construct a nonatomic game which has no pure-strategy Nash equilibrium. But if the player space is modeled by a saturated probability space, there is a pure-strategy Nash equilibrium in every nonatomic game. Finally, if every game with a fixed nonatomic player space and a fixed infinite-dimensional action space has a pure-strategy Nash equilibrium, the underlying player space must be saturated.

MSC:

91A07 Games with infinitely many players
91A10 Noncooperative games
Full Text: DOI

References:

[1] Bewley, T.F.: Existence of equilibria in economies with infinitely many commodities. J. Econ. Theory 4, 514-540 (1972) · doi:10.1016/0022-0531(72)90136-6
[2] Carmona, G., Podczeck, K.: On the existence of pure-strategy equilibria in large games. J. Econ. Theory 144, 1300-1319 (2009) · Zbl 1166.91306 · doi:10.1016/j.jet.2008.11.009
[3] Diestel, J., Uhl, J.J.: Vector Measures. American Mathematical Society, Rhode Island (1977) · Zbl 0369.46039 · doi:10.1090/surv/015
[4] Dvoretsky, A., Wald, A., Wolfowitz, J.: Relation among certain ranges of vector measures. Pac. J. Math. 1, 59-74 (1951) · Zbl 0044.15002 · doi:10.2140/pjm.1951.1.59
[5] Dvoretsky, A., Wald, A., Wolfowitz, J.: Elimination of randomization in certain statistical decision procedures and zero-sum two-person games. Ann. Math. Stat. 22, 1-21 (1951) · Zbl 0044.15003 · doi:10.1214/aoms/1177729689
[6] Fajardo, S., Keisler, H.J.: Model Theory of Stochastic Processes. A.K. Ltd, Massachusetts (2002) · Zbl 1020.60020
[7] Fan, K.: Fixed points and minimax theorems in locally convex linear spaces. Proc. Natl. Acad. Sci. USA 38, 121-126 (1952) · Zbl 0047.35103 · doi:10.1073/pnas.38.2.121
[8] Fremlin, D.H.: Measure algebra. In: Monk, J.D., Bonnet, R. (eds.) The Handbook of Boolean Algebra (vol. 3), pp. 877-980. North Holland, Amsterdam (1989) · Zbl 1097.91013
[9] Fu, H.: From large games to bayesian games: a unified approach on pure strategy equilibria, working paper. National University of Singapore (2007) · Zbl 0063.03723
[10] Glicksberg, I.L.: A further generalization of Kakutani’s fixed point theorem with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170-174 (1952) · Zbl 0046.12103
[11] Hoover, D., Keisler, H.J.: Adapted probability distributions. Trans. Am. Math. Soc. 286, 159-201 (1984) · Zbl 0548.60019 · doi:10.1090/S0002-9947-1984-0756035-8
[12] Kakutani, S.: Construction of a non-separable extension of the Lebesque measure space. Proc. Acad. Tokyo 20, 115-119 (1944) · Zbl 0060.13110 · doi:10.3792/pia/1195573106
[13] Keisler, H.J., Sun, Y.: Why saturated probability spaces are necessary. Adv. Math. 221, 1584-1607 (2009) · Zbl 1191.60009 · doi:10.1016/j.aim.2009.03.003
[14] Khan, M.A., Zhang, Y.: On sufficiently diffused information and finite-player games with private information, working paper, Johns Hopkins University, Baltimore (2012) · Zbl 0723.28005
[15] Khan, M.A.: Equilibrium points of nonatomic games over a Banach space. Trans. Am. Math. Soc. 293, 737-749 (1986) · Zbl 0594.90104 · doi:10.1090/S0002-9947-1986-0816322-3
[16] Khan, M.A., Majumdar, M.: Weak sequential convergence in \[L_1(\mu, X)\] L1(μ,X) and an approximate version of Fatou’s lemma. J. Anal. Appl. 114, 569-573 (1986) · Zbl 0602.46033 · doi:10.1016/0022-247X(86)90108-3
[17] Khan, M.A., Rath, K.P., Sun, Y.: On the existence of pure-strategy equilibria in games with a continuum of players. J. Econ. Theory 76, 13-46 (1997) · Zbl 0883.90137 · doi:10.1006/jeth.1997.2292
[18] Khan, M.A., Rath, K.P., Sun, Y.: On a private information game without pure strategy equilibria. J. Math. Econ. 31, 341-359 (1999) · Zbl 0960.91004 · doi:10.1016/S0304-4068(97)00063-3
[19] Khan, M.A., Rath, K.P., Sun, Y.: The Dvoretzky-Wald-Wolfowitz Theorem and purification in atomless finite-action games. Int. J. Game Theory 34, 91-104 (2006) · Zbl 1151.91334 · doi:10.1007/s00182-005-0004-3
[20] Khan, M.A., Sun, Y.: Pure strategies in games with private information. J. Math. Econ. 24, 633-653 (1995) · Zbl 0840.90137 · doi:10.1016/0304-4068(94)00708-I
[21] Khan, M.A., Sun, Y.: Non-cooperative games on hyperfinite Loeb spaces. J. Math. Econ. 31, 455-492 (1999) · Zbl 0940.91006 · doi:10.1016/S0304-4068(98)00031-7
[22] Khan, M.A., Yannelis, N.C.: Equilibrium Theory in Infinite Dimensional Space. Springer, Berlin (1991) · Zbl 0734.00037 · doi:10.1007/978-3-662-07071-0
[23] Khan, M.A., Zhang, Y.: Set-valued functions, Lebesgue extensions and saturated probability spaces. Adv. Math. 229, 1080-1103 (2012) · Zbl 1267.28016 · doi:10.1016/j.aim.2011.10.010
[24] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces (I). Springer, Berlin (1977) · Zbl 0362.46013 · doi:10.1007/978-3-642-66557-8
[25] Loeb, P.A., Sun, Y.: Purification and saturation. Proc. Am. Math. Soc. 137, 2719-2724 (2009) · Zbl 1179.28008 · doi:10.1090/S0002-9939-09-09818-9
[26] Maharam, D.: On homogeneous measure algebras. Proc. Natl. Acad. Sci. USA 28, 108-111 (1942) · Zbl 0063.03723 · doi:10.1073/pnas.28.3.108
[27] Noguchi, M.: Existence of Nash equilibria in large games. J. Math. Econ. 45, 168-184 (2009) · Zbl 1156.91418 · doi:10.1016/j.jmateco.2008.08.005
[28] Podczeck, K.: On the convexity and compactness of the integral of a Banach space valued correspondence. J. Math. Econ. 44, 836-852 (2008) · Zbl 1145.28009 · doi:10.1016/j.jmateco.2007.03.003
[29] Rath, K.P.: A direct proof of the existence of pure strategy equilibria in games with a continuum of players. Econ. Theory 2, 427-433 (1992) · Zbl 0809.90139 · doi:10.1007/BF01211424
[30] Rustichini, A.; Yannelis, NC; Khan, MA (ed.); Yannelis, NC (ed.), What is perfect competition, 249-265 (1991), Berlin · Zbl 0747.90021 · doi:10.1007/978-3-662-07071-0_11
[31] Stokey, N.L., Lucas, R.E., Prescott, E.C.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge (1989) · Zbl 0774.90018
[32] Sun, Y.: Integration of correspondences on Loeb spaces. Trans. Am. Math. Soc. 349, 129-153 (1997) · Zbl 0867.28013 · doi:10.1090/S0002-9947-97-01825-4
[33] Sun, Y., Yannelis, N.C.: Saturation and the integration of Banach valued correspondences. J. Math. Econ. 44, 861-865 (2008) · Zbl 1139.60005 · doi:10.1016/j.jmateco.2007.07.005
[34] Sun, Y., Zhang, Y.: Individual risk and Lebesgue extension without aggregate uncertainty. J. Econ. Theory 144, 432-443 (2009) · Zbl 1157.91385 · doi:10.1016/j.jet.2008.05.001
[35] Topkis, D.M.: Equilibrium points in nonzero-sum \[n\] n-person submodular games. SIAM J. Control Optim. 17, 773-787 (1979) · Zbl 0433.90091 · doi:10.1137/0317054
[36] Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45, 5-24 (1923) · JFM 49.0293.03 · doi:10.2307/2387224
[37] Yannelis, N.C.: On the upper and lower semicontinuity of the Aumann integral. J. Math. Econ. 19, 373-389 (1990) · Zbl 0723.28005 · doi:10.1016/0304-4068(90)90028-8
[38] Yannelis, N.C.: Debreu’s social equilibrium theorem with symmetric information and a continuum of agents. Econ. Theory 38, 419-432 (2009) · Zbl 1155.91421 · doi:10.1007/s00199-007-0246-3
[39] Yu, H.: Rationalizability in large games. Econ. Theory (2013). doi:10.1007/s00199-013-0756-0 · Zbl 1291.91033
[40] Yu, H., Zhu, W.: Large games with transformed summary statistics. Econ. Theory 26, 237-241 (2005) · Zbl 1097.91013 · doi:10.1007/s00199-004-0516-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.