×

Set-valued functions, Lebesgue extensions and saturated probability spaces. (English) Zbl 1267.28016

Summary: Recent advances in the theory of distributions of set-valued functions have been shaped by counterexamples which hinge on the non-existence of measurable selections with requisite properties. These examples, all based on the Lebesgue interval, and initially circumvented by Sun in the context of Loeb spaces, have now led Keisler and Sun (KS) to establish a comprehensive theory of the distributions of set-valued functions on saturated probability spaces (introduced by Hoover and Keisler). In contrast, we show that a countably-generated extension of the Lebesgue interval suffices for an explicit resolution of these examples; and furthermore, that it does not contradict the KS necessity results. We draw the fuller implications of our theorems for integration of set-valued functions, for Lyapunov’s result on the range of vector measures and for the theory of large non-anonymous games.

MSC:

28C99 Set functions and measures on spaces with additional structure
28E05 Nonstandard measure theory
91A07 Games with infinitely many players
91A44 Games involving topology, set theory, or logic
Full Text: DOI

References:

[1] Aubin, J.-P.; Frankowska, H., Set-Valued Analysis (1990), Birkhäuser: Birkhäuser Berlin · Zbl 0713.49021
[2] Diestel, J.; Uhl, J. J., Vector Measures (1977), American Mathematical Society: American Mathematical Society Providence · Zbl 0369.46039
[3] Džamonja, M.; Kunen, K., Properties of the class of measure separable compact spaces, Fund. Math., 147, 261-277 (1995) · Zbl 1068.28502
[4] Fajardo, S.; Keisler, H. J., Model Theory of Stochastic Processes (2002), A K Peters, Ltd.: A K Peters, Ltd. Massachusetts · Zbl 1020.60020
[5] Fremlin, D. H., Measure algebra, (Monk, J. D.; Bonnet, R., Handbook of Boolean Algebra, vol. 3 (1989), North-Holland: North-Holland Amsterdam) · Zbl 0382.28001
[6] Fremlin, D. H., Measure Theory: Topological Measure Spaces, vols. 3-5 (2003), Torres Fremlin: Torres Fremlin Colchester
[7] Halmos, P. R., Measure Theory (1950), Van Nostrand: Van Nostrand New York · Zbl 0117.10502
[8] Hart, S.; Kohlberg, E., Equally distributed correspondences, J. Math. Econom., 1, 167-174 (1974) · Zbl 0288.28013
[9] Hess, C., Set-valued integration and set-valued probability theory: an overview, (Pap, E., Handbook of Measure Theory (2002), Elsevier: Elsevier Amsterdam), 617-673 · Zbl 1022.60011
[10] Hildenbrand, W., Core and Equilibria of a Large Economy (1974), Princeton University Press: Princeton University Press Princeton · Zbl 0351.90012
[11] Hoover, D.; Keisler, H. J., Adapted probability distributions, Trans. Amer. Math. Soc., 286, 159-201 (1984) · Zbl 0548.60019
[12] Kakutani, S., Construction of a non-separable extension of the Lebesgue measure space, Proc. Acad. Tokyo, 20, 115-119 (1944) · Zbl 0060.13110
[13] Keisler, H. J.; Sun, Y. N., Why saturated probability spaces are necessary, Adv. Math., 221, 1584-1607 (2009) · Zbl 1191.60009
[14] Khan, M. A.; Rath, K. P.; Sun, Y. N., On the existence of pure strategy equilibria in games with a continuum of players, J. Econom. Theory, 76, 13-46 (1997) · Zbl 0883.90137
[16] Khan, M. A.; Sun, Y. N., Pure strategies in games with private information, J. Math. Econom., 24, 633-653 (1995) · Zbl 0840.90137
[17] Khan, M. A.; Sun, Y. N., Nonatomic games on Loeb spaces, Proc. Natl. Acad. Sci. USA, 93, 15518-15521 (1996) · Zbl 0868.90145
[18] Khan, M. A.; Sun, Y. N., On Loeb measure spaces and their significance for non-cooperative game theory, (Albers, M.; Hu, B.; Rosenthal, J., Current and Future Directions in Applied Mathematics (1997), Birkhäuser: Birkhäuser Berlin), 183-218 · Zbl 0982.91005
[19] Khan, M. A.; Sun, Y. N., Non-cooperative games with many players, (Aumann, R. J.; Hart, S., Handbook of Game Theory, vol. 3 (2002), Elsevier Science: Elsevier Science Amsterdam), 1761-1808, (Chapter 46)
[20] Klein, E.; Thompson, A. C., Theory of Correspondences (1984), John Wiley and Sons: John Wiley and Sons New York · Zbl 0556.28012
[21] Kodaira, K.; Kakutani, S., A non-separable translation invariant extension of the Lebesgue measure space, Ann. Math., 52, 574-579 (1950) · Zbl 0040.20804
[22] Loeb, P. A., Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc., 211, 113-122 (1975) · Zbl 0312.28004
[23] Loeb, P. A.; Sun, Y. N., Purification of measure-valued maps, Illinois J. Math., 50, 747-762 (2006) · Zbl 1107.28007
[24] Loeb, P. A.; Sun, Y. N., A general Fatou lemma, Adv. Math., 213, 741-762 (2007) · Zbl 1124.28014
[25] Loeb, P. A.; Sun, Y. N., Purification and saturation, Proc. Amer. Math. Soc., 137, 2719-2724 (2009) · Zbl 1179.28008
[26] Maharam, D., On homogeneous measure algebras, Proc. Natl. Acad. Sci. USA, 28, 108-111 (1942) · Zbl 0063.03723
[27] Molchanov, I., Theory of Random Sets (2005), Springer: Springer Berlin · Zbl 1109.60001
[28] Mordukhovich, B. S., Variational Analysis and Generalized Differentiation, I & II (2006), Springer
[29] Podczeck, K., On the convexity and compactness of the integral of a Banach space valued correspondence, J. Math. Econom., 44, 836-852 (2008) · Zbl 1145.28009
[30] Podczeck, K., On purification of measure-valued maps, Econom. Theory, 38, 399-418 (2009) · Zbl 1155.91427
[31] Rath, K. P.; Sun, Y. N.; Yamashige, S., The nonexistence of symmetric equilibria in anonymous games with compact action spaces, J. Math. Econom., 24, 331-346 (1995) · Zbl 0834.90145
[32] Sun, Y. N., Distributional properties of correspondences on Loeb spaces, J. Funct. Anal., 139, 68-93 (1996) · Zbl 0865.28008
[33] Sun, Y. N., Integration of correspondences on Loeb spaces, Trans. Amer. Math. Soc., 349, 129-153 (1997) · Zbl 0867.28013
[34] Sun, Y. N.; Yannelis, N. C., Saturation and the integration of Banach valued correspondences, J. Math. Econom., 44, 861-865 (2008) · Zbl 1139.60005
[36] Sun, Y. N.; Zhang, Y. C., Individual risk and Lebesgue extension without aggregate uncertainty, J. Econom. Theory, 144, 432-443 (2009) · Zbl 1157.91385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.