×

Duality of Besov, Triebel-Lizorkin and Herz spaces with variable exponents. (English) Zbl 1318.46021

Let \(\Omega \subset\mathbb{R}^{n}\) be a measurable subset, and let \(p(\cdot) \) be a measurable function \(p(\cdot) :\Omega \rightarrow (0,\infty ]\) with \(0<\) essinf\(_{x\in \Omega }p( x) \). We denote by \(L^{p(\cdot) }(\Omega ) \) the variable exponent Lebesgue space and equip it with the Luxemburg norm \[ \| f\| _{L^{p(\cdot) }( \Omega ) }=\inf\{ \lambda >0:\rho _{p}( \frac{f}{\lambda }) \leq 1\} ,\text{ where }\rho _{p}( f) =\int_{\{ p(x) <\infty \} }| f( x) | ^{p(x) }dx+\| f\| _{L^{\infty }}. \] We also denote by \(\wp _{0}(\mathbb{R}^{n}) \) and \(\wp (\mathbb{R}^{n}) \) the sets of all measurable functions \(p(\cdot) : \mathbb{R}^{n}\rightarrow (0,\infty )\) such that \(0<p_{-}\leq p_{+}<\infty \) and \(1<p_{-}\leq p_{+}<\infty \), respectively, where \(p_{-}=\mathrm{ess\, inf}_{x\in\mathbb{R}^{n}}p( x) \), \(p_{+}=\mathrm{ess\, sup}_{x\in\mathbb{R}^{n}}p( x)\). Let \(p(\cdot) ,q(\cdot) \in \wp_{0}(\mathbb{R}^{n}) \). The mixed Lebesgue sequence space \(\ell ^{q(\cdot)}( L^{p(\cdot) }) \) is the collection of all sequences \(\{ f_{j}\} _{j=0}^{\infty }\) of measurable functions on \(\mathbb{R}^{n}\) such that \[ \| \{ f_{j}\} _{j=0}^{\infty }\| _{\ell^{q(\cdot) }( L^{p(\cdot) }) }=\inf \{ \mu:\rho _{\ell ^{q(\cdot) }( L^{p(\cdot) }) }(\{ \frac{f_{j}}{\mu }\} _{j=0}^{\infty }) \leq 1\}<\infty, \] where \[ \rho _{\ell ^{q(\cdot) }( L^{p(\cdot) }) }(\{ f_{j}\} _{j=0}^{\infty }) =\sum_{j=0}^{\infty }\inf\{ \lambda _{j}:\int_{\mathbb{R}^{n}}( \frac{| f_{j}( x) | }{\lambda_{j}^{\frac{1}{q( x) }}}) ^{p( x) }dx\leq 1\} . \] Also, the mixed space \(L^{p(\cdot) }( \ell ^{q(\cdot) }) \) is the collection of all sequences \(\{ g_{j}\} _{j=0}^{\infty }\) of measurable functions on \(\mathbb{R}^{n}\) such that \[ \| \{ g_{j}\} _{j=0}^{\infty }\| _{L^{p(\cdot) }( \ell ^{q(\cdot) }) }=\| (\sum_{j=0}^{\infty }| g_{j}(\cdot) | ^{q(\cdot)}) ^{\frac{1}{q(\cdot) }}\| _{L^{p(\cdot) }}<\infty . \] Let \(\theta =\{ \theta _{j}\} _{j=1}^{\infty }\subset S(\mathbb{R}^{n}) \) be a system such that
1.
\(\begin{cases}\text{supp}\mathcal F \theta _{0}\subset \{ \xi :| \xi | \leq 2\}, \\ \text{supp}\mathcal F \theta _{j}\subset \{ \xi :2^{j-1}\leq| \xi | \leq 2^{j+1}\} \text{ for }j\geq 1. \end{cases}\)
2.
For every multi-index \(\alpha \), there exists a positive number \(C_{\alpha }\) such that \(\;2^{j| \alpha | }|D^{\alpha }\mathcal F ( \theta _{j}) ( \xi )| \leq c_{\alpha }\) holds for all \(j\in\mathbb{N}_{0}\) and all \(\xi \in\mathbb{R}^{n}\).
3.
\(\sum_{j=0}^{\infty }\mathcal F ( \theta _{j}) ( \xi) =1\) for all \(\xi \in\mathbb{R}^{n}\), where \(\mathcal F \) is the Fourier transform.
If there exist positive constants \(C_{\log }( p) ,A\) and a real number \(p_{\infty }\) such that \[ | p( x) -p( y) | \leq \frac{C^{\log }( p) }{\log ( e+| x-y| ^{-1}) } \quad ( x,y\in\mathbb{R}^{n},\;x\neq y) \tag{1} \] and \[ | p( x) -p_{\infty }| \leq \frac{A}{\log ( e+| x| ) }\quad ( x\in\mathbb{R}^{n}), \tag{2} \] we write \(C^{\log }(\mathbb{R}^{n}) \) for the set of functions \(p(\cdot) :\mathbb{R}^{n}\rightarrow\mathbb{R}\) satisfying (1) and (2).
Let \(p(\cdot) ,q(\cdot) \in C^{\log }(\mathbb{R}^{n}) \cap \wp _{0}(\mathbb{R}^{n}) \) and \(s(\cdot) \in C^{\log }(\mathbb{R}^{n})\). Furthermore, let \(\theta =\{ \theta _{j}\}_{j=1}^{\infty }\) be the system as above. The Besov space with variable exponents \(B_{p(\cdot) ,q(\cdot) }^{s(\cdot) }(\mathbb{R}^{n}) \) is the collection of \(f\in S' (\mathbb{R}^{n}) \) such that \[ \| f\| _{B_{p(\cdot) ,q(\cdot) }^{s(\cdot)}}=\| \{ 2^{js(\cdot) }\theta _{j}\ast f\} _{j=0}^{\infty }\| _{\ell ^{q(\cdot) }(L^{p(\cdot) }) }<\infty . \] The Triebel-Lizorkin space with variable exponents \(F_{p(\cdot),q(\cdot) }^{s(\cdot) }(\mathbb R^{n}) \) is the collection of \(f\in S'(\mathbb R^{n}) \) such that \[ \| f\| _{F_{p(\cdot) ,q(\cdot) }^{s(\cdot)}}=\| \{ 2^{js(\cdot) }\theta _{j}\ast f\} _{j=0}^{\infty }\| _{L^{p(\cdot) }( \ell^{q(\cdot) }) }<\infty . \] Let \(p(\cdot) ,q(\cdot) \in \wp _{0}(\mathbb R^{n}) \) and \(\alpha (\cdot) \in L^{\infty }(\mathbb R^{n}) \). The non-homogeneous Herz space \(K_{p(\cdot) }^{\alpha (\cdot) ,q(\cdot) }(\mathbb R^{n}) \) consists of all \(f\in L_{\mathrm{loc}}^{p(\cdot) }(\mathbb R^{n}) \) such that \[ \| f\| _{K_{p(\cdot) }^{\alpha (\cdot),q(\cdot) }}=\| \{ 2^{k\alpha (\cdot)}| f\chi _{k}| \} _{k=0}^{\infty }\|_{\ell ^{q(\cdot) }( L^{p(\cdot) }) }<\infty . \] The homogeneous Herz space \(\dot{K}_{p(\cdot)}^{\alpha (\cdot) ,q(\cdot) }(\mathbb R^{n}) \) consists of all \(f\in L_{\mathrm{loc}}^{p(\cdot) }(\mathbb R^{n}\backslash \{ 0\} ) \) such that \[ \| f\| _{\dot{K}_{p(\cdot) }^{\alpha (\cdot) ,q(\cdot) }}=\inf \{ \lambda >0:\sum_{k=-\infty}^{\infty }\| ( \frac{2^{k\alpha (\cdot) }|f\chi _{R_{k}}| }{\lambda }) ^{q(\cdot) }\|_{L^{\frac{p(\cdot) }{q(\cdot) }}}\leq 1\} <\infty . \] In the present paper, the authors are concerned with duality and reflexivity of Triebel-Lizorkin spaces \(F_{p(\cdot) ,q(\cdot) }^{s(\cdot)}(\mathbb R^{n}) \), Besov spaces \(B_{p(\cdot) ,q(\cdot)}^{s(\cdot) }(\mathbb R^{n})\), and Herz spaces \(K_{p(\cdot) }^{\alpha (\cdot) ,q(\cdot) }(\mathbb R^{n}) \) and \(\dot{K}_{p(\cdot) }^{\alpha (\cdot) ,q(\cdot) }(\mathbb R^{n}) \). They prove the following main theorems.
Theorem 1. Let \(p(\cdot) ,q(\cdot) \in C^{\log }(\mathbb R^{n}) \cap \wp (\mathbb R^{n}) \) and \(s(\cdot) \in C^{\log }(\mathbb R^{n}) \). Then we have \[ ( F_{p(\cdot) ,q(\cdot) }^{s(\cdot) }(\mathbb R^{n}) ) `=F_{p'(\cdot),q'(\cdot) }^{-s(\cdot) }(\mathbb R^{n}) , \] where \(p',q'\) are the conjugate exponents.
Theorem 2. Let \(p(\cdot) ,q(\cdot) \in C^{\log }(\mathbb R^{n}) \cap \wp (\mathbb R^{n}) \) and \(s(\cdot) \in C^{\log }(\mathbb R^{n}) \). Then we have \[ ( B_{p(\cdot) ,q(\cdot) }^{s(\cdot) }(\mathbb R^{n}) ) `=B_{p'(\cdot),q'(\cdot) }^{-s(\cdot) }(\mathbb R^{n}) . \]
Theorem 3. Let \(p(\cdot) ,q(\cdot) \in \wp (\mathbb R^{n}) \) and \(\alpha (\cdot) \in L^{\infty }(\mathbb R^{n}) \). Then we have \[ ( K_{p(\cdot) }^{\alpha (\cdot) ,q(\cdot)}(\mathbb R^{n}) ) `=K_{p'(\cdot)}^{-\alpha (\cdot) ,q'(\cdot) }(\mathbb R^{n}) \text{ and }( \dot{K}_{p(\cdot) }^{\alpha(\cdot) ,q(\cdot) }(\mathbb R^{n}) ) `=\dot{K}_{p'(\cdot) }^{-\alpha (\cdot) ,q'(\cdot) }(\mathbb R^{n}) . \]

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B10 Duality and reflexivity in normed linear and Banach spaces
Full Text: DOI

References:

[1] Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628-1655 (2010) · Zbl 1194.46045 · doi:10.1016/j.jfa.2009.09.012
[2] Almeida, A., Drihem, D.: Maximal, potential and singular integral type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394, 781-795 (2012) · Zbl 1250.42077 · doi:10.1016/j.jmaa.2012.04.043
[3] Antontsev, S., Rodrigues, J.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19-36 (2006) · Zbl 1117.76004 · doi:10.1007/s11565-006-0002-9
[4] Cruz-Uribe, D., SFO, A., Fiorenza, J., Martell, M., Pérez, C.: The boundedness of classical operators on variable \[L^p\] Lp spaces. Ann. Acad. Sci. Fenn. Math. 31, 239-264 (2006) · Zbl 1100.42012
[5] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013) · Zbl 1268.46002
[6] Diening, L.: Maximal function on generalized Lebesgue spaces \[L^{p(\cdot )}\] Lp(·). Math. Inequal. Appl. 7, 245-253 (2004) · Zbl 1071.42014
[7] Diening, L., Harjulehto, P., Hästö, P., Råžička, M.: Legesue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017. Springer (2011) · Zbl 1242.46044
[8] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces : limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34, 503-522 (2009) · Zbl 1180.42010
[9] Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731-1768 (2009) · Zbl 1179.46028 · doi:10.1016/j.jfa.2009.01.017
[10] Diening, L., Råžička, M.: Calderón-Zygmund operators on generalized Lebesgue spaces \[L^{p(\cdot )}\] Lp(·) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197-220 (2003) · Zbl 1072.76071
[11] Drihem, D.: Atomic decomposition of Besov spaces with variable smoothness and integrability. J. Math. Anal. Appl. 389, 15-31 (2012) · Zbl 1239.46026 · doi:10.1016/j.jmaa.2011.11.035
[12] Fan, X., Zhao, D.: On the spaces \[L^{p(x)}(\Omega )\] Lp(x)(Ω) and \[W^{m, p(x)}(\Omega )\] Wm,p(x)(Ω). J. Math. Anal. Appl. 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[13] Hernández, E., Yang, D.: Interpolation of Herz spaces and applications. Math. Nachr. 205, 69-87 (1999) · Zbl 0936.41001 · doi:10.1002/mana.3212050104
[14] Izuki, M.: Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system. East J. Approx. 15, 87-109 (2009) · Zbl 1214.42071
[15] Izuki, M.: Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glasnik Mat. 45, 475-503 (2010) · Zbl 1211.42014 · doi:10.3336/gm.45.2.14
[16] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36, 33-50 (2010) · Zbl 1224.42025 · doi:10.1007/s10476-010-0102-8
[17] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59, 199-213 (2010) · Zbl 1202.42029 · doi:10.1007/s12215-010-0015-1
[18] Izuki, M.: Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59, 461-472 (2010) · Zbl 1206.42011 · doi:10.1007/s12215-010-0034-y
[19] Izuki, M.: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 40, 343-355 (2010) · Zbl 1217.42034
[20] Izuki, M., Noi, T.: Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI preprint series 11-15 (2011) · Zbl 0890.76007
[21] Kempka, H.: Atomic, molecular and wavelet decomposition of \[22\]-microlocal Besov and Triebel-Lizorkin spaces with variable integrability. Funct. Approx. Comment. Math. 43, 171-208 (2010) · Zbl 1214.46020 · doi:10.7169/facm/1291903396
[22] Kempka, H., Vybíral, J.: A note on the spaces of variable integrability and summability of Almeida and Hästö. arXiv.102.1597v1 · Zbl 1283.46022
[23] Kov \[\acute{\rm{a}}\check{\rm{c}}\] a´cˇik, O., R \[\acute{\rm{a}}\] a´kosník, J.: On spaces \[L^{p(x)}\] Lp(x) and \[W^{k, p(x)}\] Wk,p(x). Czech. Math. J. 41(116), 592-618 (1991) · Zbl 1224.42025
[24] Noi, T.: Duality of variable exponent Triebel-Lizorkin and Besov spaces. J. Funct. Spaces Appl. (2012) · Zbl 1242.46043
[25] Noi, T.: Fourier multiplier theorems on Triebel-Lizorkin and Besov spaces with variable exponents. Math. Inequal. Appl. 17, 49-74 (2014) · Zbl 1286.42011
[26] Noi, T., Sawano, Y.: Complex interpolation of Besov spaces and Triebel-Lizorkin spaces with variable exponents. J. Math. Anal. Appl. 387, 676-690 (2012) · Zbl 1242.46044 · doi:10.1016/j.jmaa.2011.09.023
[27] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200-211 (1931) · JFM 57.0251.02
[28] Rajagopal, K., Råžička, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23, 401-407 (1996) · Zbl 0890.76007 · doi:10.1016/0093-6413(96)00038-9
[29] Samko, S.G.: Differentiation and integration of variable order and the spaces \[L^{p(x)}\] Lp(x). Contemp. Math. 212, 203-219 (1998) · Zbl 0958.26005 · doi:10.1090/conm/212/02884
[30] Triebel, H.: Spaces of distributions of Besov type on Euclidean \[n\] n-space. Duality, interpolation. Ark. Mat. 11, 13-64 (1973) · Zbl 0255.46026 · doi:10.1007/BF02388506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.