×

Complex interpolation of Besov spaces and Triebel-Lizorkin spaces with variable exponents. (English) Zbl 1242.46044

Let \(p(x)\), \(q(x)\), \(s(x)\) be real \(\log\)-Hölder continuous functions in \(\mathbb R^n\) with \[ 0<c\leq p(x), ~q(x) \leq C <\infty, \qquad x \in \mathbb R^n. \] Let \(B^{s(\cdot)}_{p(\cdot), q(\cdot)} (\mathbb R^n)\) and \(F^{s(\cdot)}_{p(\cdot), q(\cdot)} (\mathbb R^n)\) be the Besov and Triebel-Lizorkin spaces with variable exponents generalizing the nowadays well-known spaces \(B^s_{p,q} (\mathbb R^n)\) and \(F^s_{p,q} (\mathbb R^n)\) with constant exponents. The paper deals with the complex interpolation \[ \Big( F^{s_0 (\cdot)}_{p_0(\cdot), q_0 (\cdot)} (\mathbb R^n), F^{s_1 (\cdot)}_{p_1 (\cdot), q_1 (\cdot)} (\mathbb R^n) \Big)_\theta = F^{s(\cdot)}_{p(\cdot), q(\cdot)} (\mathbb R^n), \] similarly for the \(B\)-spaces, with \(0<\theta<1\), \[ \frac{1}{p(\cdot)} = \frac{1-\theta}{p_0 (\cdot)} + \frac{\theta}{p_1 (\cdot)}, \quad \frac{1}{q(\cdot)} = \frac{1-\theta}{q_0 (\cdot)} + \frac{\theta}{q_1 (\cdot)}, \quad s(\cdot) = (1-\theta)s_0 (\cdot) + \theta s_1 (\cdot), \] extending the method developed in the book [H. Triebel, Theory of Function Spaces. Monographs in Mathematics, Vol. 78. Basel-Boston-Stuttgart: Birkhäuser Verlag (1983; Zbl 0546.46027)], Section 2.4.7, from constant exponents to variable exponents.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B35 Function spaces arising in harmonic analysis
46B70 Interpolation between normed linear spaces

Citations:

Zbl 0546.46027
Full Text: DOI

References:

[1] Almeida, Alexandre; Hästö, Peter, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258, 5, 1628-1655 (2010) · Zbl 1194.46045
[2] Bergh, J.; Löfström, J., Interpolation Spaces: An Introduction (1976), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0344.46071
[3] Diening, L., Maximal function on Musielak-Orilcz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129, 657-700 (2005) · Zbl 1096.46013
[4] Diening, L.; Hästö, P.; Roudenko, S., Function spaces of variable smoothness and integrability, J. Funct. Anal., 256, 1731-1768 (2009) · Zbl 1179.46028
[5] Diening, L.; Harjulehto, P.; Hästö, P.; Mizuta, Y.; Shimomura, T., Maximal functions in variable exponent spaces: Limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math., 34, 503-522 (2009) · Zbl 1180.42010
[6] Fraizer, M.; Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. J., 34, 777-799 (1985) · Zbl 0551.46018
[7] Fraizer, M.; Jawerth, B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93, 34-170 (1990) · Zbl 0716.46031
[8] Kempka, H., Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability, Funct. Approx. Comment. Math., 43, 2, 171-208 (2010) · Zbl 1214.46020
[9] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[10] Luxenberg, W., Banach Function Spaces (1955), Assen · Zbl 0068.09204
[11] E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, in preparation.; E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, in preparation. · Zbl 1244.42012
[12] Nakano, H., Modulared Semi-Ordered Linear Spaces (1950), Maruzen Co., Ltd.: Maruzen Co., Ltd. Tokyo, i+288 pp · Zbl 0041.23401
[13] Nakano, H., Topology of Linear Topological Spaces (1951), Maruzen Co., Ltd.: Maruzen Co., Ltd. Tokyo, viii+281 pp
[14] T. Noi, Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with variable exponents, submitted for publication.; T. Noi, Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with variable exponents, submitted for publication. · Zbl 1286.42011
[15] Pick, L.; Růžička, M., An example of a space \(L^{p(\cdot)}\) on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math., 19, 369-371 (2001) · Zbl 1003.42013
[16] Rajagopal, K.; Růžička, M., On the modeling of electrorheological materials, Mech. Res. Comm., 23, 401-407 (1996) · Zbl 0890.76007
[17] Rauhut, H.; Ullrich, T., Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type, J. Funct. Anal., 260, 11, 3299-3362 (2011) · Zbl 1219.46035
[18] Samko, S. G., Differentiation and integration of variable order and the spaces \(L^{p(x)}\), Contemp. Math., 212, 203-219 (1998) · Zbl 0958.26005
[19] Triebel, H., Theory of Function Spaces (1983), Birkhäuser: Birkhäuser Basel, Boston · Zbl 0546.46028
[20] T. Ullrich, Continuous characterization of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits, J. Funct. Space Appl., in press.; T. Ullrich, Continuous characterization of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits, J. Funct. Space Appl., in press. · Zbl 1246.46036
[21] Xu, J., Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math., 33, 2, 511-522 (2008) · Zbl 1160.46025
[22] Xu, J., An atomic decomposition of variable Besov and Triebel-Lizorkin spaces, Armen. J. Math., 2, 1, 1-12 (2009), (English summary) · Zbl 1281.46036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.