×

Discrete least squares polynomial approximation with random evaluations - application to parametric and stochastic elliptic PDEs. (English) Zbl 1318.41004

The authors analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Here they discuss the quasi-optimality of the polynomial least-squares method in arbitrary dimension. The optimality criterion only involves the relation between the number of samples and the dimension of the polynomial space, independently of the anisotropic shape and of the number of variables.

MSC:

41A10 Approximation by polynomials
41A35 Approximation by operators (in particular, by integral operators)
Full Text: DOI

References:

[1] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal.45 (2007) 1005-1034 . · Zbl 1151.65008 · doi:10.1137/050645142
[2] I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal.42 (2004) 800-825. · Zbl 1080.65003 · doi:10.1137/S0036142902418680
[3] J. Bäck, F. Nobile, L. Tamellini and R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods. Math. Model. Methods Appl. Sci.22 (2012) 1250023. · Zbl 1262.65009 · doi:10.1142/S0218202512500236
[4] J. Beck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal Stochastic Galerkin Methods for a class of PDES with random coefficients. Comput. Math. Appl.67 (2014) 732-751. · Zbl 1350.65003 · doi:10.1016/j.camwa.2013.03.004
[5] A. Chkifa, A. Cohen, R. DeVore and Ch. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Math. Model. Numer. Anal.47 (2013) 253-280. · Zbl 1273.65009 · doi:10.1051/m2an/2012027
[6] A. Chkifa, A. Cohen and Ch. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math.14 (2014) 601-633. · Zbl 1298.65022 · doi:10.1007/s10208-013-9154-z
[7] A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. To appear in J. Math. Pures Appl. (2015). · Zbl 1327.65251
[8] A. Cohen, M A. Davenport and D. Leviatan, On the stability and accuracy of least squares approximations. Found. Comput. Math.13 (2013) 819-834. · Zbl 1276.93086 · doi:10.1007/s10208-013-9142-3
[9] A. Cohen, R. DeVore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math.10 (2010) 615-646. · Zbl 1206.60064 · doi:10.1007/s10208-010-9072-2
[10] A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDE’s. Anal. Appl.9 (2011) 1-37. · Zbl 1219.35379 · doi:10.1142/S0219530511001728
[11] D. Coppersmith and T.J. Rivlin, The growth of polynomials bounded at equally spaced points. SIAM J. Math. Anal.23 (1992) 970-983. · Zbl 0769.26003 · doi:10.1137/0523054
[12] Ph.J. Davis, Interpolation and Approximation. Blaisdell Publishing Company (1963).
[13] C. de Boor and A. Ron, Computational aspects of polynomial interpolation in several variables. Math. Comput.58 (1992) 705-727. · Zbl 0767.41003 · doi:10.1090/S0025-5718-1992-1122061-0
[14] C.J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput.82 (2013) 1515-1541. · Zbl 1268.35131 · doi:10.1090/S0025-5718-2013-02654-3
[15] M. Kleiber and T. D. Hien, The stochastic finite element methods. John Wiley & Sons, Chichester (1992). · Zbl 0902.73004
[16] J. Kuntzman, Méthodes numériques - Interpolation, dérivées. Dunod, Paris (1959).
[17] G. Lorentz and R. Lorentz, Solvability problems of bivariate interpolation I. Constructive Approximation2 (1986) 153-169. · Zbl 0621.41002 · doi:10.1007/BF01893422
[18] G.Migliorati, Polynomial approximation by means of the random discreteL^{2} projection and application to inverse problems for PDEs with stochastic data. Ph.D. thesis, Dipartimento di Matematica ”Francesco Brioschi” Politecnico di Milano, Milano, Italy, and Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau, France (2013).
[19] G. Migliorati, Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets. J. Approx. Theory189 (2015) 137-159. · Zbl 1309.41002 · doi:10.1016/j.jat.2014.10.010
[20] G. Migliorati, F. Nobile, E. von Schwerin and R. Tempone, Analysis of discrete L^{2} projection on polynomial spaces with random evaluations. Found. Comput. Math.14 (2014) 419-456. · Zbl 1301.41005
[21] G. Migliorati, F. Nobile, E. von Schwerin and R. Tempone, Approximation of Quantities of Interest in stochastic PDEs by the random discrete L^{2} projection on polynomial spaces. SIAM J. Sci. Comput.35 (2013) A1440-A1460. · Zbl 1276.65004 · doi:10.1137/120897109
[22] V. Nistor and Ch. Schwab, High order Galerkin approximations for parametric, second order elliptic partial differential equations, Report 2012-22, Seminar for Applied Mathematics, ETH Zürich. Math. Models Methods Appl. Sci.23 (2013). · Zbl 1275.65081 · doi:10.1142/S0218202513500218
[23] F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal.46 (2008) 2309-2345. · Zbl 1176.65137 · doi:10.1137/060663660
[24] F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal.46 (2008) 2411-2442. · Zbl 1176.65007 · doi:10.1137/070680540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.