×

Analysis of discrete \(L^2\) projection on polynomial spaces with random evaluations. (English) Zbl 1301.41005

For a given smooth multivariate function \(\phi = \phi(Y^1,\dots,Y^d)\) depending on \(d\) random variables \(Y^1,\dots,Y^d,\) the authors analyze the problem of approximating \(\phi\) by discrete least-squares projection on a multivariate polynomial space, starting from noise-free observation of \(\phi\) on random evaluations of \(Y^1,\dots,Y^d.\) In Section 2 of the paper is introduced the approximation problem as an \(L^2\) projection on a space of polynomials in \(d\) underlying variables; some common choices of polynomial spaces are also described. Further, the optimality of the random \(L^2\) projection, in terms of a best approximation constant, is proved, and the asymptotic behavior of this best approximation constant is analyzed, as the number of random evaluation points goes to infinity. In Section 3 the previous study is restricted to polynomial spaces in one variable and a theorem is proved, which provides a rule to select the number of random points as a function of the maximal polynomial degree, which makes the discrete random \(L^2\) projection nearly optimal with any prescribed confidence level. Section 4 gives the algebraic formulation of the random projection problem, and Section 5 complements the analysis with numerical tests, both in the one-dimensional case and in higher dimensions, respectively.

MSC:

41A10 Approximation by polynomials
41A25 Rate of convergence, degree of approximation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000. · Zbl 1008.65076
[2] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev., 52(2):317-355, 2010. · Zbl 1226.65004
[3] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In J.S. Hesthaven and E.M. Ronquist, editors, Spectral and High Order Methods for Partial Differential Equations, volume 76, pages 43-62. Springer, Berlin, 2011. · Zbl 1216.65004
[4] A.M. Bagirov, C. Clausen, and M. Kohler. Estimation of a regression function by maxima of minima of linear functions. IEEE Trans. Inform. Theory, 55(2):833-845, 2009. · Zbl 1367.62085
[5] W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003. · Zbl 1020.65058
[6] J. Beck, F. Nobile, L. Tamellini, and R. Tempone. On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Mod. Methods, Appl. Sci. (M3AS), 22(9):1250023-1, 1250023-33, 2012. · Zbl 1262.65009
[7] P. Binev, A. Cohen, W. Dahmen, and R. DeVore. Universal algorithms for learning theory. II. Piecewise polynomial functions. Constr. Approx., 26(2):127-152, 2007. · Zbl 1191.62067
[8] P. Binev, A. Cohen, W. Dahmen, R. DeVore, and Vladimir Temlyakov. Universal algorithms for learning theory. I. Piecewise constant functions. J. Mach. Learn. Res., 6:1297-1321, 2005. · Zbl 1191.62068
[9] G. Blatman and B. Sudret. Sparse Polynomial Chaos expansions and adaptive stochastic finite elements using regression approach. C.R.Mechanique, 336:518-523, 2008. · Zbl 1138.74046
[10] G. Blatman and B. Sudret. Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230(6):2345-2367, 2011. · Zbl 1210.65019
[11] E.J. Candès, J.K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207-1223, 2006. · Zbl 1098.94009
[12] C. Canuto and A. Quarteroni. Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp., 38(157):67-86, 1982. · Zbl 0567.41008
[13] A. Cohen, M. Davenport, and D. Leviatan. On the stability and accuracy of least squares approximations. Found. Comput. Math., 13:819-834, 2013. · Zbl 1276.93086
[14] A. Cohen, R. DeVore, and C. Schwab. Convergence rates of best \[NN\]-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math., 10(6):615-646, 2010. · Zbl 1206.60064
[15] A. Cohen, R. DeVore, and C. Schwab. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.), 9(1):11-47, 2011. · Zbl 1219.35379
[16] T. Crestaux, O. Le Maître, and J.M. Maritinez. Polynomial Chaos Expansion for Sensitivity Analysis. Reliability Engineering and System Safety, 94(7):1161-1172, 2009.
[17] H. A. David and H. N. Nagaraja. Order statistics. Wiley-Interscience, Hoboken, Third edition, 2003. · Zbl 1053.62060
[18] B. Debusschere, H. Najm, P. Pebray, O. Knio, R. Ghanem, and O. Le Maître. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes. SIAM J. Sci. Comput., 26(2):698-719, 2005. · Zbl 1072.60042
[19] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306, 2006. · Zbl 1288.94016
[20] M.S. Eldred. Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design. In Proceedings of the AIAA 50th conference on Structural Dynamics, and Materials 2009, Palm Springs, California, American Institute of Aeronautics and Astronautics, Reston, VA, 2009.
[21] M.S. Eldred. Design under uncertainty employing stochastic expansion methods. International Journal for Uncertainty Quantification, 1:119-146, 2011. · Zbl 1225.65064
[22] O.G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann. On the convergence of generalized polynomial chaos expansions. ESAIM Math. Model. Numer. Anal., 46:317-339, 2012. · Zbl 1273.65012
[23] G.R. Ghanem and P.D. Spanos. Stochastic Finite Elements: a spectral approach. Dover Publications, Mineola, 2003. · Zbl 0953.74608
[24] A. Gut. Probability: A Graduate Course, volume 75 of Springer texts in statistics. Springer, Berlin, 2005. · Zbl 1076.60001
[25] L. Gyørfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer-Verlag, Berlin, first edition, 2002. · Zbl 1021.62024
[26] S. Hosder, R. W. Walters, and M. Balch. Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics. AIAA Journal, 48:2721-2730, 2010.
[27] M. Kohler. Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression. J. Statist. Plann. Inference, 89(1-2):1-23, 2000. · Zbl 0982.62035
[28] M. Kohler. Nonlinear orthogonal series estimates for random design regression. J. Statist. Plann. Inference, 115(2):491-520, 2003. · Zbl 1016.62040
[29] O.P. Le Maître and O.M. Knio. Spectral Methods for Uncertainty Quantification. Springer, New York, 2010. · Zbl 1193.76003
[30] G. Migliorati. Polynomial approximation by means of the random discrete \[L^2\] L2projection and application to inverse problems for PDEs with stochastic data. PhD thesis, Dipartimento di Matematica “Francesco Brioschi”, Politecnico di Milano and Centre de Mathématiques Appliquées, École Polytechnique, 2013.
[31] G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone. Approximation of Quantities of Interest in stochastic PDEs by the random discrete \[L^2\] L2 projection on polynomial spaces. SIAM J. Sci. Comput., 35(3):A1440-A1460, 2013. · Zbl 1276.65004
[32] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2309-2345, 2008. · Zbl 1176.65137
[33] W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York, third edition, 1976. · Zbl 0346.26002
[34] B. Sudret. Global sensitivity analysis using polynomial chaos expansion. Reliability Engineering and System Safety, 93:964-979, 2008.
[35] D. Xiu. Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys., 5(2-4):242-272, 2009. · Zbl 1364.65019
[36] D. Xiu and G.E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619-644 (electronic), 2002. · Zbl 1014.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.