×

On cubic Hermite coalescence hidden variable fractal interpolation functions. (English) Zbl 1340.41003

Summary: Hermite interpolation is a very important tool in approximation theory and numerical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the shortcoming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a \({\mathcal C}^1\)-cubic Hermite interpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global \({\mathcal C}^2\)-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an alternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by A. K. B. Chand and G. P. Kapoor [Fractals, 15, No. 1, 41–53 (2007; Zbl 1148.28005)].

MSC:

41A05 Interpolation in approximation theory
41A15 Spline approximation
41A25 Rate of convergence, degree of approximation
65D17 Computer-aided design (modeling of curves and surfaces)
28A80 Fractals

Citations:

Zbl 1148.28005
Full Text: DOI

References:

[1] J Ahlberg, E Nilson, J Walsh. The Theory of Splines and Their Applications, Academic Press, New York, 1967. · Zbl 0158.15901
[2] R Baier, G Perria. Set valued Hermite interpolation, J Approx Theory, 2011, 163: 1349–1372. · Zbl 1252.41002 · doi:10.1016/j.jat.2010.11.004
[3] M F Barnsley. Fractal functions and interpolation, Constr Approx, 1986, 2: 303–329. · Zbl 0606.41005 · doi:10.1007/BF01893434
[4] M F Barnsley. Fractals Everywhere, Academic Press, Orlando, Florida, 1988. · Zbl 0691.58001
[5] M F Barnsley, A N Harrington. The calculus of fractal interpolation functions, J Approx Theory, 1989, 57(1): 14–34. · Zbl 0693.41008 · doi:10.1016/0021-9045(89)90080-4
[6] M F Barnsley, J Elton, D Hardin, P Massopust. Hidden variable fractal interplation functions, SIA M J Math Anal, 1989, 20(5): 1218–1242. · Zbl 0704.26009 · doi:10.1137/0520080
[7] G Birkhoff, A Priver. Hermite interpolation errors for derivatives, J Math Phys, 1967, 46: 440–447. · Zbl 0176.14202 · doi:10.1002/sapm1967461440
[8] W Boehm, G Farin, J Kahmann. A survey of curve and surface methods in CAGD, CAGD, 1984, 1: 1–60. · Zbl 0604.65005
[9] P Bouboulis, L Dalla, M Kostaki-Kosta. Construction of smooth fractal surfaces using Hermite fractal interpolation functions, Bull Greek Math Soc, 2007, 54: 179–196. · Zbl 1182.41003
[10] A K B Chand, G P Kapoor. Generalized cubic spline fractal interpolation functions, SIA M J Numer Anal, 2006, 44(2): 655–676. · Zbl 1136.41006 · doi:10.1137/040611070
[11] A K B Chand, G P Kapoor. Spline coalescence hidden variable fractal interpolation functions, J Appl Math, 2006, Article ID 36829, pages 17. · Zbl 1146.41003
[12] A K B Chand, G P Kapoor. Smoothness analysis of coalescence hidden variable fractal interpolation functions, Int J Nonlinear Sci, 2007, 3: 15–26. · Zbl 1394.28003
[13] A K B Chand, G P Kapoor. Cubic spline coalescence fractal interpolation through moments, Fractals, 2007, 15(1): 41–53. · Zbl 1148.28005 · doi:10.1142/S0218348X07003381
[14] A K B Chand, M A Navascués. Natural bicubic spline fractal interpolation, Nonlinear Anal, 2008, 69: 3679–3691. · Zbl 1168.65009 · doi:10.1016/j.na.2007.10.011
[15] A K B Chand, M A Navascués. Generalized Hermite fractal interpolation, Rev R Acad Cienc Zaragoza, 2009, 64(2): 107–120. · Zbl 1207.28002
[16] A K B Chand, P Viswanathan. A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects, BIT, 2013, 53: 841–865. · Zbl 1283.65010 · doi:10.1007/s10543-013-0442-4
[17] P R Massopust. Fractal Functions, Fractal Surfaces and Wavelets, Academic Press, 1994. · Zbl 0817.28004
[18] G Micula, S Micula. Handbook of Splines, Kluwer, Dordrecht, The Netherlands, 1999. · Zbl 0914.65003
[19] M A Navascués. Fractal polynomial interpolation, Z Anal Anwend, 2005, 25: 401–418. · Zbl 1082.28006 · doi:10.4171/ZAA/1248
[20] M A Navascués. Fractal trigonometric approximation, Electron Trans Numer Anal, 2005, 20: 64–74. · Zbl 1091.42001
[21] M A Navascués, M. Sebastián. Some results of convergence of cubic spline fractal interpolation functions, Fractals, 2003, 11(1): 1–7. · Zbl 1053.41013 · doi:10.1142/S0218348X03001550
[22] M A Navascués, M V Sebastián. Generalization of Hermite functions by fractal interpolation, J Approx Theory, 2004, 131(1): 19–29. · Zbl 1068.41006 · doi:10.1016/j.jat.2004.09.001
[23] M H Schultz. Spline Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1973. · Zbl 0333.41009
[24] J Stoer, R Bulirsch. Introduction to Numerical Analysis, Springer, NewYork, 1980. · Zbl 0423.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.