×

Stability and Hopf bifurcation for a three-species food chain model with time delay and spatial diffusion. (English) Zbl 1308.92109

Summary: This paper deals with a delayed three-species Lotka-Volterra food chain model with diffusion effects and homogeneous Neumann boundary conditions. By taking the sum of delays as the bifurcation parameter, spatially homogeneous and nonhomogeneous Hopf bifurcations at the positive constant steady state are proved to occur for a sequence of critical values of the delay parameter. In addition, sufficient conditions for global asymptotic stability of the positive constant steady state are derived by using an iteration technique. Furthermore, in order to determine the direction of spatially homogeneous Hopf bifurcation and the stability of bifurcated periodic solutions, the formulas are given by using the normal form theory and the center manifold reduction for PFDEs. Finally, to verify our theoretical predictions, some numerical simulations are also included.

MSC:

92D40 Ecology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B32 Bifurcations in context of PDEs
Full Text: DOI

References:

[1] Lotka, A. J., Elements of Physical Biology (1925), Williams and Wilkins: Williams and Wilkins Baltimore · JFM 51.0416.06
[2] Volterra, V., Fluctuations in the abundance of species, considered mathematically, Nature, 118-558 (1926) · JFM 52.0453.03
[3] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 1530-1535 (1992)
[4] Chen, F.; You, M., Permanence extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey, Nonlinear Anal. Real World Appl., 9, 207-221 (2008) · Zbl 1142.34051
[5] Chen, W.; Wang, M., Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Comput. Modelling, 42, 31-44 (2005) · Zbl 1087.35053
[6] Murray, J. D., Mathematical Biology (1993), Spring-Verlag: Spring-Verlag New York · Zbl 0779.92001
[7] Fan, Y. H.; Wang, L. L., Periodic solutions in a delayed predator-prey model with nonmonotonic functional response, Nonlinear Anal. Real World Appl., 10, 3275-3284 (2009) · Zbl 1172.34043
[8] Hsu, S.; Hwang, T.; Kuang, Y., A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181, 55-83 (2003) · Zbl 1036.92033
[9] Ko, W.; Ahn, I., Analysis of ratio-dependent food chain model, J. Math. Anal. Appl., 335, 498-523 (2007) · Zbl 1126.35078
[10] Wang, F.; Hao, C.; Chen, L., Bifurcation and chaos in a Tessiet type food chain chemostat with pulsed input and washout, Chaos Solitons Fractals, 32, 1547-1561 (2007) · Zbl 1126.92059
[11] Nindjin, A. F.; Aziz-Alaoui, M. A., Persistence and global stability in a delayed Leslie-Gower type three species food chain, J. Math. Anal. Appl., 340, 340-357 (2008) · Zbl 1127.92046
[12] Lin, Z.; Pedersen, M., Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal., 57, 421-433 (2004) · Zbl 1053.35026
[13] Peng, R.; Shi, J.; Wang, M., Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J. Appl. Math., 67, 1479-1503 (2007) · Zbl 1210.35268
[14] Wang, F.; Pang, G., Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain, Chaos Solitons Fractals, 36, 1366-1376 (2008) · Zbl 1148.37046
[15] Pathak, S.; Maiti, A.; Samanta, G. P., Rich dynamics of a food chain model with Hassell-Varley type functional responses, Appl. Math. Comput., 208, 303-317 (2009) · Zbl 1156.92044
[16] Chiu, C.; Hsu, S., Extinction of top-predator in a three-level food-chain model, J. Math. Biol., 37, 372-380 (1998) · Zbl 0908.92029
[17] Xu, R.; Chaplain, M. A.J.; Davidson, H. F.A., Periodic solution for a three-species Lotka-Volterra food-chain model with time delays, Math. Comput. Modelling, 40, 823-837 (2004) · Zbl 1067.92063
[18] Pao, C.-V., Global asymptotic stability of Lotka-Volterra 3-species reaction-diffusion systems with time delays, J. Math. Anal. Appl., 281, 186-204 (2003) · Zbl 1031.35071
[19] Faria, T., Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254, 433-463 (2001) · Zbl 0973.35034
[20] Yan, X.-P.; Chu, Y. D., Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system, J. Comput. Appl. Math., 196, 198-210 (2006) · Zbl 1095.92071
[21] Cohen, D. S.; Rosenblat, S., Multi-species interactions with hereditary effects and spatial diffusions, J. Theoret. Biol., 7, 231-241 (1979) · Zbl 0402.92026
[22] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0870.35116
[23] Yan, X.-P., Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects, Appl. Math. Comput., 192, 552-566 (2007) · Zbl 1193.35098
[24] Yan, X.-P.; Li, W.-T., Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects, Internat. J. Bifur. Chaos, 18, 441-453 (2008) · Zbl 1162.35319
[25] Wang, Y., Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays, J. Math. Anal. Appl., 328, 137-150 (2007) · Zbl 1112.35106
[26] Kuang, Y.; Smith, H. L., Global stability in diffusive delay Lotka-Volterra systems, Differential Integral Equations, 4, 117-128 (1991) · Zbl 0752.34041
[27] Kuang, Y.; Smith, H. L., Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks, J. Austral. Math. Soc. Ser. B, 34, 471-494 (1993) · Zbl 0807.35149
[28] Yoshida, K., The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12, 321-348 (1982) · Zbl 0522.35011
[29] Murray, J. D., Mathematical Biology (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0779.92001
[30] Pao, C.-V., Nonlinear Parabolic and Elliptic Equations (1996), Plenum: Plenum New York
[31] Hale, J. K., Theory of Functional Differential Equations (1977), Spring-Verlag: Spring-Verlag New York · Zbl 0425.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.