×

Existence and regularity of minimizers for some spectral functionals with perimeter constraint. (English) Zbl 1297.49077

Summary: In this paper we prove that the shape optimization problem \[ \min \bigl\{\lambda_k(\varOmega):\;\varOmega\subset \mathbb{R}^d,\;\varOmega\;\text{ open},\;P(\varOmega)=1,\;|\varOmega|<+\infty \bigr\}, \] has a solution for any \(k\in \mathbb{N}\) and dimension \(d\). Moreover, every solution is a bounded connected open set with boundary which is \(C^{1,\alpha}\) outside a closed set of Hausdorff dimension \(d-8\). Our results are more general and can be applied to spectral functionals of the form \(f(\lambda_{k_{1}}(\varOmega),\dots,\lambda_{k_{p}}(\varOmega))\), for increasing functions \(f\) satisfying some suitable bi-Lipschitz type condition.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49N60 Regularity of solutions in optimal control

References:

[1] Almgren, F.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4(165) (1976) · Zbl 0327.49043
[2] Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105-144 (1981) · Zbl 0449.35105
[3] Ambrosio, L., Caselles, V., Masnou, S., Morel, J.M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. 3(1), 39-92 (2001) · Zbl 0981.49024 · doi:10.1007/PL00011302
[4] Briançon, T., Hayouni, M., Pierre, M.: Lipschitz continuity of state functions in some optimal shaping. Calc. Var. Partial Differ. Equ. 23(1), 13-32 (2005) · Zbl 1062.49035 · doi:10.1007/s00526-004-0286-5
[5] Briançon, T., Lamboley, J.: Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26(4), 1149-1163 (2009) · Zbl 1194.49059 · doi:10.1016/j.anihpc.2008.07.003
[6] Bucur, D.: Uniform concentration-compactness for Sobolev spaces on variable domains. J. Differ. Equ. 162, 427-450 (2000) · Zbl 0957.49027 · doi:10.1006/jdeq.1999.3726
[7] Bucur, D.: Minimization of the kth eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206(3), 1073-1083 (2012) · Zbl 1254.35165 · doi:10.1007/s00205-012-0561-0
[8] Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations, vol. 65. Birkhäuser, Basel (2005) · Zbl 1117.49001
[9] Bucur, D., Buttazzo, G., Henrot, A.: Minimization of λ2(Ω) with a perimeter constraint. Indiana Univ. Math. J. 58(6), 2709-2728 (2009) · Zbl 1186.49032 · doi:10.1512/iumj.2009.58.3768
[10] Bucur, D., Buttazzo, G., Velichkov, B.: Spectral optimization problems with internal constraint. Ann. Inst. H. Poincaré 30(3), 477-495 (2013) · Zbl 1287.49049 · doi:10.1016/j.anihpc.2012.10.002
[11] Bucur, D., Freitas, P.: Asymptotic behaviour of optimal spectral planar domains with fixed perimeter (to appear) · Zbl 1290.35164
[12] Bucur, D., Mazzoleni, D., Pratelli, A., Velichkov, B.: Lipschitz regularity of eigenfunctions at optimal shapes (in preparation) · Zbl 1319.49067
[13] Bucur, D., Velichkov, B.: Multiphase shape optimization problems Preprint available at: http://cvgmt.sns.it/paper/2114/ · Zbl 1312.49050
[14] Buttazzo, G.: Spectral optimization problems. Rev. Mat. Complut. 24(2), 277-322 (2011) · Zbl 1226.49038 · doi:10.1007/s13163-011-0066-7
[15] Buttazzo, G., Dal Maso, G.: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23, 17-49 (1991) · Zbl 0762.49017 · doi:10.1007/BF01442391
[16] Buttazzo, G., Dal Maso, G.: An existence result for a class of shape optimization problems. Arch. Ration. Mech. Anal. 122, 183-195 (1993) · Zbl 0811.49028 · doi:10.1007/BF00378167
[17] Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations. Am. Math. Soc. Colloquium Publications, vol. 43 (1995) · Zbl 0834.35002
[18] Caffarelli, L., Cordoba, A.: An elementary regularity theory of minimal surfaces. Differ. Integral Equ. 6, 1-13 (1993) · Zbl 0783.35008
[19] De Philippis, G., Paolini, E.: A short proof of the minimality of Simons cone. Rend. Semin. Mat. Univ. Padova 12, 233-241 (2009) · Zbl 1165.53305 · doi:10.4171/RSMUP/121-14
[20] Dal Maso, G., Garroni, A.: New results on the asymptotic behaviour of Dirichlet problems in perforated domains. Math. Models Methods Appl. Sci. 3, 373-407 (1994) · Zbl 0804.47050 · doi:10.1142/S0218202594000224
[21] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[22] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002
[23] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Boston (1984) · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[24] Henrot, A.: Minimization problems for eigenvalues of the Laplacian. J. Evol. Equ. 3(3), 443-461 (2003) · Zbl 1049.49029 · doi:10.1007/s00028-003-0111-0
[25] Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser, Basel (2006) · Zbl 1109.35081
[26] Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques & Applications, vol. 48. Springer, Berlin (2005) · Zbl 1098.49001
[27] Jiang, H., Larsen, C., Silvestre, L.: Full regularity of a free boundary problem with two phases. Calc. Var. Partial Differ. Equ. 42, 301-321 (2011) · Zbl 1251.49051 · doi:10.1007/s00526-011-0389-8
[28] Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74(3), 441-448 (1983) · Zbl 0538.35058 · doi:10.1007/BF01394245
[29] Lions, P.L.: The Concentration-Compactness Principle in the Calculus of Variations. The Locally Compact Case, Part 1. Annales de l’I. H. P., Section C, tome 1 (1984) · Zbl 0541.49009
[30] Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: an Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012) · Zbl 1255.49074 · doi:10.1017/CBO9781139108133
[31] Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. J. Math. Pures Appl. 100(3), 433-453 (2013) · Zbl 1296.35100 · doi:10.1016/j.matpur.2013.01.008
[32] Mazzone, F.: A single phase variational problem involving the area of level surfaces. Commun. Partial Differ. Equ. 28, 991-1004 (2003) · Zbl 1058.49031 · doi:10.1081/PDE-120021183
[33] Simon, L., Lectures on geometric measure theory, No. 3 (1983), Canberra · Zbl 0546.49019
[34] Talenti, G.: Elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa 3(4), 697-718 (1976) · Zbl 0341.35031
[35] Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334, 27-39 (1982) · Zbl 0479.49028
[36] Tamanini, I.: Regularity results for almost minimal hyperurfaces in \(\mathbb{R}^n\). Quaderni del Dipartimento di Matematica dell’ Università di Lecce (1984) · Zbl 1191.35007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.