×

D’alembert-Lagrange analytical dynamics for nonholonomic systems. (English) Zbl 1315.70008

Summary: The d’Alembert-Lagrange principle (DLP) is designed primarily for dynamical systems under ideal geometric constraints. Although it can also cover linear-velocity constraints, its application to nonlinear kinematic constraints has so far remained elusive, mainly because there is no clear method whereby the set of linear conditions that restrict the virtual displacements can be easily extracted from the equations of constraint. On recognition that the commutation rule traditionally accepted for velocity displacements in Lagrangian dynamics implies displaced states that do not satisfy the kinematic constraints, we show how the property of possible displaced states can be utilized ab initio so as to provide an appropriate set of linear auxiliary conditions on the displacements, which can be adjoined via Lagrange’s multipliers to the d’Alembert-Lagrange equation to yield the equations of state, and also new transpositional relations for nonholonomic systems. The equations of state so obtained for systems under general nonlinear velocity and acceleration constraints are shown to be identical with those derived (in Appendix A) from the quite different Gauss principle. The present advance therefore solves a long outstanding problem on the application of DLP to ideal nonholonomic systems and, as an aside, provides validity to axioms as the Chetaev rule, previously left theoretically unjustified. A more general transpositional form of the Boltzmann-Hamel equation is also obtained.{
©2011 American Institute of Physics}

MSC:

70F25 Nonholonomic systems related to the dynamics of a system of particles
70H03 Lagrange’s equations
37J60 Nonholonomic dynamical systems
Full Text: DOI

References:

[1] Maruskin, J. M.; Bloch, A. M., The Boltzmann-Hamel equations for the optimal control of mechanical systems with nonholonomic constraints, Int. J. Robust Nonlinear Control, 21, 373 (2011) · Zbl 1213.49029
[2] Cronström, C.; Raita, T., J. Math. Phys., 50, 042901 (2009) · Zbl 1214.70010 · doi:10.1063/1.3097298
[3] Grabowski, J.; León, M. de; Marrero, J. C.; Diego, D. Martín de, J. Math. Phys., 50, 013520 (2009) · Zbl 1200.37057 · doi:10.1063/1.3049752
[4] Fernandez, O. E.; Bloch, A. M., J. Phys. A, 41, 344005 (2008) · Zbl 1195.70023 · doi:10.1088/1751-8113/41/34/344005
[5] Cendra, H.; Grillo, S., J. Math. Phys., 47, 022902 (2006) · Zbl 1111.70012 · doi:10.1063/1.2165797
[6] Flannery, M. R., Am. J. Phys., 73, 265 (2005) · Zbl 1219.70039 · doi:10.1119/1.1830501
[7] León, M. de; Diego, D. M. de; Santamarí-Merino, A., J. Math. Phys., 45, 1042 (2004) · Zbl 1070.37058 · doi:10.1063/1.1644325
[8] Bloch, A. M., Nonholonomic Mechanics and Control (2003) · Zbl 1045.70001
[9] Marle, C.-M., Rep. Math. Phys., 42, 211 (1998) · Zbl 0931.37023 · doi:10.1016/S0034-4877(98)80011-6
[10] Tondu, B.; Bazaz, S. A., Int. J. Robot. Res., 18, 893 (1999) · doi:10.1177/02783649922066637
[11] Goldstein, H.; Poole, C.; Safko, J., Classical Dynamics (2003)
[12] Lagrange, J. L.; Boissonnade, A.; Vagliente, V. N., Mécanique Analytique (1997)
[13] d’Alembert, J., Traité de Dynamique (1743)
[14] Whittaker, E. T., A treatise on the Analytical Dynamics of Particles and Rigid Bodies, 255 (1965)
[15] Pars, L. A., A Treatise on Analytical Dynamics (1979) · Zbl 0125.12004
[16] Greenwood, D. T., Advanced Dynamics, 39-296 (2003)
[17] Rosenberg, R. M., Analytical Dynamics of Discrete Systems, 142-145 (1977) · Zbl 0416.70001
[18] Gantmacher, F., Lectures in Analytical Mechanics (1970) · Zbl 0212.56701
[19] Hertz, H., Die Prinzipen Der Mechanik in Neuem Zusammenhange Dargestellt. The Principles of Mechanics Presented in a New Form (1956)
[20] Gauss, C. F., J. Reine Angew. Math., 4, 232 (1829) · ERAM 004.0157cj
[21] Lanczos, C., The Variational Principles of Mechanics, 92-106 (1970) · Zbl 0257.70001
[22] Papastavridis, J. G., Analytical Mechanics: Advanced Treatise, 911-930 (2002)
[23] Gibbs, J. W., Am. J. Math., 2, 49 (1879) · JFM 11.0643.01 · doi:10.2307/2369196
[24] Jourdain, P. E. B., Q. J. Pure Appl. Math., 40, 153 (1909)
[25] Flannery, M. R., “Gibbs and Jourdain principles revisited for ideal nonholonomic systems,” (unpublished).
[26] 26.P.Appell, Dynamique des Système, Mécanique Analytique, Traité de Mécanique Rationelle Vol. 2 (Gauthier-Villars, Paris, 1953); Acad. Sci., Paris, C. R.129, 459 (1899).
[27] Appell, P., Acad. Sci., Paris, C. R., 152, 1197 (1911) · JFM 42.0755.02
[28] Ray, J. R., Am. J. Phys., 40, 179 (1972) · doi:10.1119/1.1986465
[29] Desloge, E. A., Am. J. Phys., 56, 841 (1988) · doi:10.1119/1.15463
[30] Cariñena, J. F.; Rañada, M. F., J. Phys. A, 26, 1335 (1993) · Zbl 0772.58016 · doi:10.1088/0305-4470/26/6/016
[31] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1994)
[32] Benenti, S., Rend. Semin. Mat. Torino, 54, 203 (1996) · Zbl 0911.70011
[33] Lewis, A. D., Rep. Math. Phys., 38, 11 (1996) · Zbl 0892.70011 · doi:10.1016/0034-4877(96)87675-0
[34] Saunders, D. J.; Sarlet, W.; Cantrijn, F., J. Phys. A, 29, 42654274 (1996) · Zbl 0900.70196 · doi:10.1088/0305-4470/29/14/042
[35] León, M. de; Marrero, J. C.; Diego, D. M. de, J. Phys. A, 30, 1167 (1997) · Zbl 1001.70505 · doi:10.1088/0305-4470/30/4/018
[36] Cortés, J.; León, M. de; Diego, D. M. de; Martínez, S., SIAM J. Control Optim., 41, 1389 (2002) · Zbl 1210.70013 · doi:10.1137/S036301290036817X
[37] Chetaev, N. G., Izv. Fiz.-Mat. Obsc. Kaz. Univ., 6, 68 (1933)
[38] Saletan, E. J.; Cromer, A. H., Am. J. Phys., 38, 892 (1970) · doi:10.1119/1.1976488
[39] 39.J. R.Ray, Am. J. Phys.34, 406 (1966);10.1119/1.1973007Erratum34, 1202 (1966). · Zbl 0146.20403
[40] Kozlov, V. V., Sov. Phys. Dokl., 28, 735 (1983)
[41] Arnold, V. I.; Kozlov, V. V.; Nejshtadt, A. I., Mathematical aspects of classical and celestial mechanics, Dynamical Systems 11: Encyclopaedia of Mathematical Sciences (1988) · Zbl 0674.70003
[42] Zampieri, G., J. Differ. Equations, 163, 335 (2000) · Zbl 0962.70021 · doi:10.1006/jdeq.1999.3727
[43] Cendra, H.; Ibort, A.; León, M. de; Diego, D. M. de, J. Math. Phys., 45, 2785 (2004) · Zbl 1071.70009 · doi:10.1063/1.1763245
[44] Li, S. M.; Berakdar, J., Rep. Math. Phys., 63, 179 (2009) · Zbl 1169.70007 · doi:10.1016/S0034-4877(09)00012-3
[45] Li, S. M.; Berakdar, J., Rep. Math. Phys., 60, 107 (2007) · Zbl 1130.70006 · doi:10.1016/S0034-4877(07)80102-9
[46] Bibbona, E.; Fatibene, L.; Francaviglia, M., J. Math. Phys., 48, 032903 (2007) · Zbl 1137.70342 · doi:10.1063/1.2709848
[47] Cardin, F.; Favretti, M., J. Geom. Phys., 18, 295 (1996) · Zbl 0864.70007 · doi:10.1016/0393-0440(95)00016-X
[48] Gao, P., Mech. Res. Commun., 32, 255 (2005) · Zbl 1192.70016 · doi:10.1016/j.mechrescom.2004.10.015
[49] Neimark, J. I.; Fufaev, N. A., Dynamics of Nonholonomic Systems, 120-143 (1972) · Zbl 0245.70011
[50] Neimark, J. I.; Fufaev, N. A., J. Appl. Math. Mech., 24, 1541 (1960) · Zbl 0104.40101 · doi:10.1016/0021-8928(60)90006-X
[51] Rund, H., The Hamilton-Jacobi Theory in the Calculus of Variations, 358 (1966) · Zbl 0141.10602
[52] Flannery, M. R., “The elusive d’Alembert-Lagrange dynamics of nonholonomic systems,” Am. J. Phys. (in press). · Zbl 1315.70008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.