×

Graded quantum cluster algebras and an application to quantum Grassmannians. (English) Zbl 1315.13036

A cluster algebra, as invented by S. Fomin and A. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017)], is a commutative algebra generated by a family of generators called cluster variables. The quantum deformations were defined in [A. Berenstein and A. Zelevinsky, Adv. Math. 195, No. 2, 405–455 (2005; Zbl 1124.20028)] to serve as an algebraic framework for the study of dual canonical bases in coordinate rings and their \(q\)-deformations.
It has been recognised that cluster algebra structures on homogeneous coordinate rings on Grassmannians are among the most important classes of examples. The demonstration of the existence of such a structure is due to J. S. Scott [Proc. Lond. Math. Soc. (3) 92, No. 2, 345–380 (2006; Zbl 1088.22009)].
In this paper, the authors introduce a framework for \(\mathbb{Z}\)-gradings on cluster algebras (and their quantum analogues) compatible with mutation by choosing the degrees of the (quantum) cluster variables in an initial seed subject to a compatibility with the initial exchange matrix, and then extending this to all cluster variables by mutation. In the quantum setting, by using this grading framework, the authors give a construction that produces a new quantum cluster algebra with the same cluster combinatorics but with different quasi-commutation relations between the cluster variables. As an application, the authors show that the quantum Grassmannians \(\mathbb{K}_q[\mathrm{Gr}(k,n)]\) admit quantum cluster algebra structures.

MSC:

13F60 Cluster algebras
20G42 Quantum groups (quantized function algebras) and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] I.Assem, D.Simson, A.Skowroński, ‘Techniques of representation theory’, Elements of the representation theory of associative algebras, vol. 1, London Mathematical Society Student Texts 65 (Cambridge University Press, Cambridge, 2006). · Zbl 1092.16001
[2] A.Berenstein, S.Fomin, A.Zelevinsky, ‘Cluster algebras. III. Upper bounds and double Bruhat cells’, Duke Math. J., 126 (2005) 1-52. · Zbl 1135.16013
[3] A.Berenstein, A.Zelevinsky, ‘Quantum cluster algebras’, Adv. Math., 195 (2005) 405-455. · Zbl 1124.20028
[4] K. A.Brown, K. R.Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics (CRM, Barcelona, Birkhäuser, Verlag, Basel, 2002). · Zbl 1027.17010
[5] N.Ciccoli, R.Fioresi, F.Gavarini, ‘Quantization of projective homogeneous spaces and duality principle’, J. Noncommut. Geom., 2 (2008) 449-496. · Zbl 1168.16024
[6] R.Fioresi, ‘Quantum deformation of the Grassmannian manifold’, J. Algebra, 214 (1999) 418-447. · Zbl 0955.17007
[7] S.Fomin, P.Pylyavskyy, ‘Tensor diagrams and cluster algebras’, Preprint, 2012, arXiv:1210.1888.
[8] S.Fomin, A.Zelevinsky, ‘Double Bruhat cells and total positivity’, J. Amer. Math. Soc., 12 (1999) 335-380. · Zbl 0913.22011
[9] S.Fomin, A.Zelevinsky, ‘Cluster algebras. I. Foundations’, J. Amer. Math. Soc., 15 (2002) 497-529 (electronic). · Zbl 1021.16017
[10] C.Geiss, B.Leclerc, J.Schröer, ‘Semicanonical bases and preprojective algebras’, Ann. Sci. École Norm. Sup., (4)38 (2005) 193-253. · Zbl 1131.17006
[11] C.Geiß, B.Leclerc, J.Schröer, ‘Partial flag varieties and preprojective algebras’, Ann. Inst. Fourier (Grenoble), 58 (2008) 825-876. · Zbl 1151.16009
[12] C.Geiß, B.Leclerc, J.Schröer, ‘Kac-Moody groups and cluster algebras’, Adv. Math., 228 (2011) 329-433. · Zbl 1232.17035
[13] C.Geiß, B.Leclerc, J.Schröer, ‘Cluster structures on quantum coordinate rings’, Selecta Math. (N.S.), 19 (2013) 337-397. · Zbl 1318.13038
[14] M.Gekhtman, M.Sapiro, A.Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs 167 (American Mathematical Society, Providence, RI, 2010). · Zbl 1217.13001
[15] K. R.Goodearl, M.Yakimov, ‘From quantum Ore extensions to quantum tori via noncommutative UFDs’, Preprint, 2012, arXiv:1208.6267. · Zbl 1352.16037
[16] J. E.Grabowski, S.Launois, ‘Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite‐type cases’, Int. Math. Res. Not., 2011 (2011) 2230-2262. · Zbl 1223.14065
[17] B.Keller, ‘Cluster algebras, quiver representations and triangulated categories’, Triangulated categories, London Mathematical Society Lecture Note Series 375 (Cambridge University Press, Cambridge, 2010) 76-160. · Zbl 1215.16012
[18] A.Kelly, T. H.Lenagan, L.Rigal, ‘Ring theoretic properties of quantum grassmannians’, J. Algebra Appl., 3 (2004) 9-30. · Zbl 1081.16048
[19] S.Kolb, ‘The AS‐Cohen-Macaulay property for quantum flag manifolds of minuscule weight’, J. Algebra, 319 (2008) 3518-3534. · Zbl 1165.17007
[20] G. R.Krause, T. H.Lenagan, Growth of algebras and Gelfand-Kirillov dimension, revised edn, Graduate Studies in Mathematics 22 (American Mathematical Society, Providence, RI, 2000). · Zbl 0957.16001
[21] S.Launois, T. H.Lenagan, L.Rigal, ‘Prime ideals in the quantum grassmannian’, Selecta Math. (N.S.), 13 (2008) 697-725. · Zbl 1146.16023
[22] T. H.Lenagan, L.Rigal, ‘Quantum graded algebras with a straightening law and the AS‐Cohen-Macaulay property for quantum determinantal rings and quantum Grassmannians’, J. Algebra, 301 (2006) 670-702. · Zbl 1108.16026
[23] T. H.Lenagan, E. J.Russell, ‘Cyclic orders on the quantum Grassmannian’, Arab. J. Sci. Eng. Sect. C Theme Issues, 33 (2008) 337-350. · Zbl 1186.16041
[24] G.Lusztig, Introduction to quantum groups, Progress in Mathematics 110 (Birkhäuser Boston, Boston, MA, 1993). · Zbl 0788.17010
[25] A.Mériaux, G.Cauchon, ‘Admissible diagrams in quantum nilpotent algebras and combinatoric properties of Weyl groups’, Represent. Theory, 14 (2010) 645-687. · Zbl 1233.17011
[26] J. S.Scott, ‘Grassmannians and cluster algebras’, Proc. London Math. Soc., (3)92 (2006) 345-380. · Zbl 1088.22009
[27] M.Yakimov, ‘A classification of \(H\)‐primes of quantum partial flag varieties’, Proc. Amer. Math. Soc., 138 (2010) 1249-1261. · Zbl 1245.16030
[28] M.Yakimov, ‘Invariant prime ideals in quantizations of nilpotent Lie algebras’, Proc. London Math. Soc., (3)101 (2010) 454-476. · Zbl 1229.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.