×

A classification of \(H\)-primes of quantum partial flag varieties. (English) Zbl 1245.16030

Let \(G\) be a connected simply connected split semisimple algebraic group of rank \(r\) over a field \(\mathbb K\) of characteristic zero and let \(B\) denote the standard Borel subgroup of \(G\) corresponding to the positive roots. Moreover, let \(\mathfrak g\) denote the Lie algebra of \(G\), let \(q\) be an element in \(\mathbb K\) that is transcendental over \(\mathbb Q\) and let \(\mathcal U_q(\mathfrak g)\) denote the quantized universal enveloping algebra of \(\mathfrak g\) at \(q\) with standard generators \(X_1^\pm,\dots,X_r^\pm\) and \(K_1^{\pm 1},\dots,K_r^{\pm 1}\). For \(I\subseteq\{1,\dots,r\}\) denote by \(P_I\supseteq B\) the standard parabolic subgroup of \(G\) corresponding to \(I\). Finally, let \(R_q[G/P_I]\) denote the quantized coordinate ring of the partial flag variety \(G/P_I\). The ring \(R_q[G/P_I]\) is a deformation of the coordinate ring of the multicone over \(G/P_I\) and is invariant under the conjugation action of the group-like elements \(H:=\langle K_1^{\pm 1},\dots,K_r^{\pm 1}\rangle\) of \(\mathcal U_q(\mathfrak g)\).
The goal of the paper under review is to study the \(H\)-invariant prime ideals of \(R_q[G/P_I]\) that do not contain the augmentation ideal. The main result is a bijection between these invariant prime ideals and certain pairs of Weyl group elements. In particular, all these invariant prime ideals are completely prime. Moreover, the author conjectures that the inclusion of invariant prime ideals is reflected in the Bruhat order of the components of the parametrizing pairs. The proof of the main result uses techniques of A. Joseph [Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.Folge. 29. Berlin: Springer-Verlag (1995; Zbl 0808.17004)] similar to those used in establishing a natural bijection between primitive ideals in \(R_q[\mathrm{SL}(n)]\) and symplectic leaves of the associated Poisson group \(\mathrm{SL}(n,\mathbb C)\) due to T. J. Hodges and T. Levasseur [J.Algebra 168, No.2, 455-468 (1994; Zbl 0814.17012)] as well as in M. Gorelik’s investigation of the spectra of quantum Bruhat cell translates [J.Algebra 227, No.1, 211-253 (2000; Zbl 1038.17006)]. As a consequence one obtains a stratification of the \(H\)-invariant prime spectrum of \(R_q[G/P_I]\) and then the strata are related to \(H\)-invariant prime ideals of the algebras investigated by the author in a previous paper [Proc.Lond.Math.Soc.(3) 101, No.2, 454-476 (2010; Zbl 1229.17020)]. Analogous results are also obtained for quantum deformations of the coordinate rings of the cones \(\mathrm{Spec}\left(\bigoplus_{n\in\mathbb Z_{\geq 0}}H^0(G/P_I,\mathcal L_{n\lambda})\right)\) over \(G/P_I\) for certain dominant weights.

MSC:

16T20 Ring-theoretic aspects of quantum groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B45 Lie algebras of linear algebraic groups
16D25 Ideals in associative algebras
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
14M15 Grassmannians, Schubert varieties, flag manifolds
20G42 Quantum groups (quantized function algebras) and their representations

References:

[1] K. A. Brown, K. R. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Adv. Math. 206 (2006), no. 2, 567 – 629. · Zbl 1105.53062 · doi:10.1016/j.aim.2005.10.004
[2] Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. · Zbl 0839.17009
[3] C. De Concini, V. G. Kac, and C. Procesi, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 41 – 65. · Zbl 0878.17014
[4] C. De Concini and C. Procesi, Quantum Schubert cells and representations at roots of 1, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 127 – 160. · Zbl 0901.17005
[5] K. R. Goodearl and E. S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1381 – 1403. · Zbl 0978.16040
[6] K. R. Goodearl and M. Yakimov, Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5753 – 5780. · Zbl 1179.53087
[7] Maria Gorelik, The prime and the primitive spectra of a quantum Bruhat cell translate, J. Algebra 227 (2000), no. 1, 211 – 253. · Zbl 1038.17006 · doi:10.1006/jabr.1999.8235
[8] Timothy J. Hodges and Thierry Levasseur, Primitive ideals of \?_{\?}[\?\?(\?)], J. Algebra 168 (1994), no. 2, 455 – 468. · Zbl 0814.17012 · doi:10.1006/jabr.1994.1239
[9] Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. · Zbl 0808.17004
[10] V. Lakshmibai and N. Reshetikhin, Quantum flag and Schubert schemes, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) Contemp. Math., vol. 134, Amer. Math. Soc., Providence, RI, 1992, pp. 145 – 181. · Zbl 0792.17012 · doi:10.1090/conm/134/1187287
[11] S. Launois, T. H. Lenagan, and L. Rigal, Prime ideals in the quantum Grassmannian, Selecta Math. (N.S.) 13 (2008), no. 4, 697 – 725. · Zbl 1146.16023 · doi:10.1007/s00029-008-0054-z
[12] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0788.17010
[13] G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70 – 78. · Zbl 0895.14014
[14] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. · Zbl 0644.16008
[15] A. Mériaux and G. Cauchon, Admissible diagrams in \( U_{q}^{w}(\mathfrak{g})\) and combinatoric properties of Weyl groups, preprint, arXiv:0902.0754. · Zbl 1233.17011
[16] D. S. Passman, Semiprime and prime crossed products, J. Algebra 83 (1983), no. 1, 158 – 178. · Zbl 0511.16002 · doi:10.1016/0021-8693(83)90142-4
[17] K. Rietsch, Closure relations for totally nonnegative cells in \?/\?, Math. Res. Lett. 13 (2006), no. 5-6, 775 – 786. · Zbl 1107.14040 · doi:10.4310/MRL.2006.v13.n5.a8
[18] Ya. S. Soĭbel\(^{\prime}\)man, On the quantum flag manifold, Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 90 – 92 (Russian); English transl., Funct. Anal. Appl. 26 (1992), no. 3, 225 – 227. · Zbl 0820.17017 · doi:10.1007/BF01075642
[19] M. Yakimov, Invariant prime ideals in quantizations of nilpotent Lie algebras, preprint, arXiv:0905.0852. · Zbl 1229.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.