×

Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. (English) Zbl 1314.74021

Summary: This paper aims to study the nonlinear-forced vibrations of a viscoelastic cantilever with a piecewise piezoelectric actuator layer on its top surface using the method of Multiple Scales. The governing equation of motion is a second-order nonlinear ordinary differential equation with quadratic and cubic nonlinearities which appear in stiffness, inertia, and damping terms. The nonlinear terms are due to the piezoelectricity, viscoelasticity, and geometry of the system. Forced vibrations of the system are investigated in the cases of primary resonance and non-resonance hard excitation including subharmonic and superharmonic resonances. Analytical expressions for frequency responses are derived, and the effects of different parameters including damping coefficient, thickness to width ratio of the beam, length and position of the piezoelectric layer, density of the beam, and the piezoelectric coefficient on the frequency-response curves are discussed for each case. It is shown that in all these cases, the response of the system follows a softening behavior due to the existence of the piezoelectric layer. The piezoelectric layer provides an effective tool for active control of vibration. In addition, the effect of the viscoelasticity of the beam on passive control of amplitude of vibration is illustrated.

MSC:

74F15 Electromagnetic effects in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
70Q05 Control of mechanical systems
Full Text: DOI

References:

[1] Altenbach, H., Eremeyev, V.A.: Mechanics of Viscoelastic Plates Made of FGMs. Springer (2010) · Zbl 1356.74036
[2] Bar-Cohen, Y.: Electro Active Polymer (EPA) Actuators as Artificial Muscles, Reality, Potential, and Challenges. SPIE Optical Engineering Press, Bellingham (2001)
[3] Hau, L.C., Fung, E.H.K.: Effect of ACLD treatment configuration on damping performance of a flexible beam. J. Sound Vib. 269, 549-567 (2004) · doi:10.1016/S0022-460X(03)00041-5
[4] Hau, L.C., Fung, E.H.K.: Multi-objective optimization of an active constrained layer damping treatment for shape control of flexible beams. Smart Mater. Struct. 13, 896-906 (2004) · doi:10.1088/0964-1726/13/4/028
[5] Vasques, C.M.A., Dias Rodrigues, J.: Combined feedback/feedforward active control of vibration of beams with ACLD treatments: numerical simulation. Comput. Struct. 86, 292-306 (2008) · doi:10.1016/j.compstruc.2007.01.027
[6] Kumar, S., Kumar, R., Sehgal, R.: Enhanced ACLD treatment using stand-off-layer: FEM based design and experimental vibration analysis. Appl. Acoust. 72, 856-872 (2011) · doi:10.1016/j.apacoust.2011.05.010
[7] Sun, D., Tong, L.: Effect of debonding in active constrained layer damping patches on hybrid control of smart beams. Int. J. Solids Struct. 40, 1633-1651 (2003) · Zbl 1032.74658 · doi:10.1016/S0020-7683(02)00672-8
[8] Sun, D., Tong, L.: A compressional-shear model for vibration control of beams with active constrained layer damping. Int. J. Mech. Sci. 46, 1307-1325 (2004) · Zbl 1181.74093 · doi:10.1016/j.ijmecsci.2004.08.005
[9] Shi, Y., Hua, H., Sol, H.: The finite element analysis and experimental study of beams with active constrained layer damping treatments. J. Sound Vib. 278, 343-363 (2004) · Zbl 1236.74285 · doi:10.1016/j.jsv.2003.10.009
[10] Sharnappa, Ganesan, N., Sethuraman, R.: Dynamic modeling of active constrained layer damping of composite beam under thermal environment. J. Sound Vib. 305, 728-749 (2007) · doi:10.1016/j.jsv.2007.04.033
[11] Zheng, H., Cai, C., Tan, X.M.: Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Comput. Struct. 82, 2493-2507 (2004) · doi:10.1016/j.compstruc.2004.07.002
[12] Bilasse, M., Daya, E.M., Azrar, L.: Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. J. Sound Vib. 329, 4950-4969 (2010) · doi:10.1016/j.jsv.2010.06.012
[13] Jacques, N., Daya, E.M., Potier-Ferry, M.: Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods. J. Sound Vib. 329, 4251-4265 (2010) · doi:10.1016/j.jsv.2010.04.021
[14] Mahmoodi, S.N., Khadem, S.E., Kokabi, M.: Nonlinear free vibrations of Kelvin-Voigt viscoelastic beams. Int. J. Mech. Sci. 49, 722-732 (2007) · doi:10.1016/j.ijmecsci.2006.10.005
[15] Mahmoodi, S.N., Jalili, N., Khadem, S.E.: An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. J. Sound Vib. 311, 1409-1419 (2008) · doi:10.1016/j.jsv.2007.09.027
[16] Bakhtiari-Nejad, F., Nazari, M.: Nonlinear vibration analysis of isotropic cantilever plate with viscoelastic laminate. Nonlinear Dyn. 56(4), 325-356 (2009) · Zbl 1204.74022 · doi:10.1007/s11071-008-9401-z
[17] Eshmatov, B.K.: Nonlinear vibrations of viscoelastic cylindrical shells taking into account shear deformation and rotatory inertia. Nonlinear Dyn. 50(1-2), 353-361 (2007) · Zbl 1193.74053 · doi:10.1007/s11071-006-9163-4
[18] Xia, Z.O., Lukasiewicz, S.: Nonlinear damped vibrations of simply-supported rectangular sandwich plates. Nonlinear Dyn. 8(4), 417-433 (1995)
[19] Younesian, D., Esmailzadeh, E.: Non-linear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn. 60(1-2), 193-205 (2010) · Zbl 1189.74049 · doi:10.1007/s11071-009-9589-6
[20] Esmailzadeh, E., Jalali, M.A.: Nonlinear oscillations of viscoelastic rectangular plates. Nonlinear Dyn. 18(4), 311-319 (1999) · Zbl 0956.74018 · doi:10.1023/A:1026452007472
[21] Mahmoudkhani, S., Haddadpour, H.: Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations. Nonlinear Dyn. 74, 165-188 (2013) · Zbl 1281.74022 · doi:10.1007/s11071-013-0956-y
[22] Mahmoodi, S.N., Khadem, S.E., Jalili, N.: Theoretical development and closed-form solution of nonlinear vibrations of a directly excited nanotube-reinforced composite cantilever beam. Arch. Appl. Mech. 75, 153-163 (2006) · Zbl 1119.74422 · doi:10.1007/s00419-005-0426-1
[23] Mahmoodi, S.N., Jalili, N., Khadem, S.E.: Passive nonlinear vibrations of a directly excited nanotube-reinforced composite cantilever beam. In: Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition, Symposium on Vibration and Noise Control, Orlando, FL, Nov 2005 · Zbl 1119.74422
[24] Wang, Q., Quek, S.T.: Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator. Smart Mater. Struct. 9, 103-109 (2000) · doi:10.1088/0964-1726/9/1/311
[25] Mahmoodi, S.N., Jalili, N.: Nonlinear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Nonlinear Mech. 42, 577-587 (2007) · doi:10.1016/j.ijnonlinmec.2007.01.019
[26] Mahmoodi, S.N., Daqaq, M., Jalili, N.: On the nonlinear-flexural response of piezoelectrically-driven microcantilever sensors. Sens. Actuators A 153, 171-179 (2009) · doi:10.1016/j.sna.2009.05.003
[27] Mahmoodi, S.N., Jalili, N., Ahmadian, M.: Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers. Nonlinear Dyn. 59(3), 397-409 (2010) · Zbl 1183.74103 · doi:10.1007/s11071-009-9546-4
[28] Daqaq, M.F., Alhazza, K.A., Arafat, H.N.: Non-linear vibrations of cantilever beams with feedback delays. Int. J. Non-Linear Mech. 43(9), 962-978 (2008) · Zbl 1203.74060 · doi:10.1016/j.ijnonlinmec.2008.07.005
[29] Korayem, M.H., Ghaderi, R.: Vibration response of a piezoelectrically actuated microcantilever subjected to tip-sample interaction. Sci. Iranica 20(1), 195-206 (2013)
[30] Belouettar, S., Azrar, L., Daya, E.M., Laptev, V., Potier-Ferry, M.: Active control of nonlinear vibration of sandwich piezoelectric beams: a simplified approach. Comput. Struct. 86, 386-397 (2008) · doi:10.1016/j.compstruc.2007.02.009
[31] Fung, E.H.K., Yau, D.T.W.: Vibration characteristics of a rotating flexible arm with ACLD treatment. J. Sound Vib. 269, 165-182 (2004) · doi:10.1016/S0022-460X(03)00046-4
[32] Li, F.M., Kishimoto, K., Wang, Y.S., Chen, Z.B., Huang, W.H.: Vibration control of beams with active constrained layer damping. Smart Mater. Struct. 17, 065036 (2008) · doi:10.1088/0964-1726/17/6/065036
[33] Cai, C., Zheng, H., Chung, K., Zhang, Z.J.: Vibration analysis of a beam with an active constraining layer damping patch. Smart Mater. Struct. 15, 147-156 (2006) · doi:10.1088/0964-1726/15/1/043
[34] Rechdaoui, M.S., Azrar, L.: Active control of secondary resonances piezoelectric sandwich beams. Appl. Math. Comput. 216, 3283-3302 (2010) · Zbl 1198.78007 · doi:10.1016/j.amc.2010.04.055
[35] Shooshtari, A., Hoseini, S.M., Mahmoodi, S.N., Kalhori, H.: Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer. Smart Mater. Struct. 21, 075015 (2012)
[36] Christensen, R.M.: Theory of Viscoelasticity. Academic Press, New York (1982)
[37] Dadfarnia, M., Jalili, N., Liu, Z., Dawson, D.M.: An observer-based piezoelectric control of flexible Cartesian robot arms: theory and experiment. Control Eng. Pract. 12, 1041-1053 (2004) · doi:10.1016/j.conengprac.2003.09.003
[38] Meirovitch, L.: Analytical Methods in Vibrations. Macmillian, London (1967) · Zbl 0166.43803
[39] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) · Zbl 0418.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.