×

Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers. (English) Zbl 1183.74103

Summary: Using the method of multiple scales, an extensive frequency response and subharmonic resonance analysis of the equations of motion governing the nonlinear flexural vibrations of piezoelectrically actuated microcantilevers is performed. Such comprehensive understanding of the nonlinear response and subharmonics analysis of these microcantilevers is, indeed, justified by the applications of piezoelectrically actuated microcantilevers that are increasingly becoming popular in many science and engineering areas including scanning force microscopy, biosensors, and microactuators. Along this line, the method of multiple scales is used to derive the \(2\times \) and \(3\times \) subharmonic resonances appearing in nonlinear flexural vibrations of a piezoelectrically actuated microcantilever. An experimental examination is performed in order to verify the analytical results. The analytical and experimental results yield the same system response for the fundamental frequency. In addition, the experimental results demonstrate the presence of subharmonic resonances that are supported by numerical simulations of the equations of motion. The experimental mode shapes of these subharmonic frequencies are also measured and compared with fundamental frequency.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Xie, W.C., Lee, H.P., Lim, S.P.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31, 243–256 (2003) · Zbl 1113.74405 · doi:10.1023/A:1022914020076
[2] Das, S., Sreeram, P.A., Raychaudhuri, A.K., Sai, T.P., Brar, L.K.: Non-contact dynamic mode atomic force microscope: Effects of nonlinear atomic forces. In: Proceedings of 2006: IEEE Conference on Emerging Technologies–Nanoelectronics, pp. 458–462 (2006)
[3] Dufour, I., Heinrich, S.M., Josse, F.: Theoretical analysis of strong-axis bending mode vibrations for resonant microcantilever bio-chemical sensors in gas or liquid phase. J. Microelectromech. Syst. 16(1), 44–49 (2007) · doi:10.1109/JMEMS.2006.885850
[4] Scherer, V., Arnold, W., Bhushan, B.: Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999) · doi:10.1002/(SICI)1096-9918(199905/06)27:5/6<578::AID-SIA527>3.0.CO;2-5
[5] Hosaka, H., Itao, K.: Vibration of microcantilever array induced by airflow force. ASME J. Vib. Acoust. 124, 26–32 (2002) · doi:10.1115/1.1421054
[6] Salehi-Khojin, A., Bashash, S., Jalili, N.: Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J. Micromech. Microeng. 18(8), 085008 (2008) · doi:10.1088/0960-1317/18/8/085008
[7] Dareing, D.W., Thundat, T., Jeon, S., Nicholson, M.: Modal analysis of microcantilever sensors with environmental damping. J. Appl. Phys. 97, 084902 (2005) · doi:10.1063/1.1880472
[8] Yuya, P.A., Wen, Y., Turner, J.A., Dzenis, Y.A., Li, Z.: Determination of Young’s modulus of individual electrospun nanofibers by microcantilever vibration method. Appl. Phys. Lett. 90, 111909 (2007) · doi:10.1063/1.2713128
[9] Spletzer, M., Raman, A., Sumali, H., Sullivan, J.P.: Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92, 114102 (2008) · doi:10.1063/1.2899634
[10] Hwang, K.S., Lee, S., Eom, K., Lee, J.H., Lee, Y., Park, J.H., Yoon, D.S., Kim, T.S.: Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. Biosens. Bioelectron. 23, 459–465 (2007) · doi:10.1016/j.bios.2007.05.006
[11] Nayfeh, A.H., Chin, C., Nayfeh, S.A.: Non-linear normal modes of a cantilever beam. ASME J. Vib. Acoust. 117, 477–481 (1995) · Zbl 0925.70238 · doi:10.1115/1.2874486
[12] Nayfeh, A.H., Nayfeh, S.A.: Non-linear normal modes of a continuous systems with quadratic non-linearities. ASME J. Vib. Acoust. 117, 199–207 (1994) · doi:10.1115/1.2873898
[13] Mahmoodi, S.N., Khadem, S.E., Rezaee, M.: Analysis of nonlinear mode shapes and natural frequencies of continuous damped systems. J. Sound Vib. 275, 283–298 (2004) · doi:10.1016/j.jsv.2003.06.022
[14] Arafat, H.N., Nayfeh, A.H., Chin, C.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15, 31–61 (1998) · Zbl 0910.73034 · doi:10.1023/A:1008218009139
[15] Dadfarnia, M., Jalili, N., Xian, B., Dawson, D.M.: A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. ASME J. Dyn. Syst. Meas. Control 126, 347–358 (2004) · doi:10.1115/1.1767854
[16] Dadfarnia, M., Jalili, N., Liu, Z., Dawson, D.M.: An observer-based piezoelectric control of flexible Cartesian robot arms: Theory and experiment. Control Eng. Pract. 12, 1041–1053 (2004) · doi:10.1016/j.conengprac.2003.09.003
[17] Narita, F., Shindo, Y., Mikami, M.: Analytical and experimental study of nonlinear bending response and domain wall motion in piezoelectric laminated actuators under AC electric fields. Acta Mater. 53, 4523–4529 (2005) · doi:10.1016/j.actamat.2005.05.044
[18] Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Non-Linear Mech. 42, 577–587 (2007) · doi:10.1016/j.ijnonlinmec.2007.01.019
[19] Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics and identification of a piezoelectrically-actuated microcantilever sensor. ASME/IEEE Trans. Mechatron. 13(1), 59–65 (2008)
[20] Sharos, L.B., Raman, A., Crittenden, S., Reifenberger, R.: Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Appl. Phys. Lett. 84(23), 4638–4640 (2004) · doi:10.1063/1.1759379
[21] Ren, Q., Zhao, Y.P.: Influence of surface stress on frequency of microcantilever-based biosensors. Microsyst. Technol. 10, 307–314 (2004) · doi:10.1007/s00542-003-0329-4
[22] Vyas, A., Bajaj, A.K., Raman, A., Proulis, D.: Nonlinear micromechanical filters based on internal resonance phenomenon. In: Proceedings of Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems–Digest of Papers, pp. 35–38 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.