×

Eigenmodes of the damped wave equation and small hyperbolic subsets. (Modes propres de l’équation des ondes amorties et petits sous-ensembles hyperboliques.) (English. French summary) Zbl 1314.58019

Let \((M,g)\) be a smooth compact, connected Riemanian manifold without boundary of dimension \(d \geq 2\). In this paper the author considers the solutions \(u_\tau \in L^2(M)\) of the equation \[ (-\Delta_g -\tau^2 -2_{ia(x)\tau})u_\tau =0, a\geq 0 \] (which come from the solutions of the damped wave equations of the form \(v = e^{-it \tau} u_\tau\)). Motivated by earlier results by J. A. Toth and S. Zelditch [Ann. Henri Poincaré 4, No. 2, 343–368 (2003; Zbl 1028.58028)], N. Burq and M. Zworski [J. Am. Math. Soc. 17, No. 2, 443–471 (2004; Zbl 1050.35058)], H. Christianson [J. Funct. Anal. 246, No. 2, 145–195 (2007; Zbl 1119.58018)], the author studies the concentration in shrinking tubes of size \(hv, h \, 1/\tau\) (where \(0 < v < 1/2\)) around more general hyperbolic subsets than in the above cited works, under conditions of negative topological pressure. The method of proofs uses ideas from the works by N. Anantharaman and S. Nonnenmacher [Ann. Inst. Fourier 57, No. 7, 2465–2523 (2007; Zbl 1145.81033)], S. Nonnenmacher and M. Zworski [Acta Math. 203, No. 2, 149–233 (2009; Zbl 1226.35061)] and N. Anantharaman [Geom. Funct. Anal. 20, No. 3, 593–626 (2010; Zbl 1205.35173)].
This article includes also an appendix by S. Nonnenmacher and the author where they establish the existence of an inverse logarithmic strip without eigenvalues below the real axis under a prensure condition on the set of undamped trajectories.

MSC:

58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
35P20 Asymptotic distributions of eigenvalues in context of PDEs
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)

References:

[1] Anantharaman, N., Entropy and the localization of eigenfunctions, Ann. of Math., 168, 2, 438-475 (2008) · Zbl 1175.35036
[2] Anantharaman, N., Spectral deviations for the damped wave equation, Geom. Func. Anal., 20, 593-626 (2010) · Zbl 1205.35173
[3] Anantharaman, N.; Nonnenmacher, S., Half delocalization of eigenfunctions of the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), 57, 2465-2523 (2007) · Zbl 1145.81033
[4] Asch, M.; Lebeau, G., The spectrum of the damped wave operator for a bounded domain in \(\mathbb{R}^2\), Exp. Math., 12, 227-240 (2003) · Zbl 1061.35064
[5] Bouzouina, A.; Robert, D., Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. Jour., 111, 223-252 (2002) · Zbl 1069.35061
[6] Bowen, R.; Ruelle, D., The ergodic theory of Axiom A flows, Inv. Math., 29, 181-202 (1975) · Zbl 0311.58010
[7] Burq, Nicolas, Astérisque, 245, 167-196 (19961997) · Zbl 0954.35102
[8] Burq, Nicolas; Christianson, H., Imperfect control for the damped wave equation (2009) · Zbl 1320.35062
[9] Burq, Nicolas; Zworski, M., Geometric control in the presence of a black box, J. Amer. Math. Soc., 17, 443-471 (2004) · Zbl 1050.35058
[10] Christianson, H., Semiclassical nonconcentration near hyperbolic orbits, J. Funct. Anal., 246, 145-195 (2007) · Zbl 1119.58018
[11] Christianson, H., Applications of Cutoff Resolvent Estimates to the Wave Equation, Math. Res. Lett., 16, 577-590 (2009) · Zbl 1189.58012
[12] Christianson, H., Quantum Monodromy and Non-concentration Near a Closed Semi-hyperbolic Orbit, Trans. Amer. Math. Soc., 363, 3373-3438 (2011) · Zbl 1230.58020
[13] Christianson, H.; Schenck, E.; Vasy, A.; Wunsch, J., From resolvent estimates to damped waves, To appear in “Journal d’Analyse Mathématique” · Zbl 1301.35191
[14] Colin de Verdière, Yves; Parisse, Bernard, Équilibre instable en régime semi-classique. I. Concentration microlocale, Comm. Partial Differential Equations, 19, 9-10, 1535-1563 (1994) · Zbl 0819.35116
[15] Dimassi, M.; Sjöstrand, J., Spectral Asymptotics in the Semiclassical Limit (1999) · Zbl 0926.35002
[16] Helffer, B.; Martinez, A.; Robert, D., Ergodicité et limite semi-classique, Commun. Math. Phys., 109, 313-326 (1987) · Zbl 0624.58039
[17] Hitrik, M., Eigenfrequencies for Damped Wave Equations on Zoll manifolds, Asympt. Analysis, 31, 265-277 (2002) · Zbl 1032.58014
[18] Hitrik, M., Eigenfrequencies and Expansions for Damped Wave Equations, Methods and Applications of Analysis, 10, 543-564 (2003) · Zbl 1088.58510
[19] Hörmander, Lars, The analysis of linear partial differential operators. III, 274 (1985) · Zbl 0601.35001
[20] Katok, Anatole; Hasselblatt, Boris, Introduction to the modern theory of dynamical systems, 54 (1995) · Zbl 0878.58019
[21] Lebeau, G., Algebraic and geometric methods in mathematical physics (Kaciveli 1993), 19, 73-109 (1996) · Zbl 0863.58068
[22] Nonnenmacher, S., Spectral theory of damped quantum chaotic systems, Journées Équations aux Dérivées Partielles (2011)
[23] Nonnenmacher, S.; Zworski, M., Quantum decay rates in chaotic scattering, Acta Math., 203, 149-233 (2009) · Zbl 1226.35061
[24] Pesin, Yakov B., Dimension theory in dynamical systems (1997) · Zbl 0895.58033
[25] Rivière, Gabriel, Delocalization of slowly damped eigenmodes on Anosov manifolds, Comm. Math. Phys., 316, 2, 555-593 (2012) · Zbl 1273.58020 · doi:10.1007/s00220-012-1588-7
[26] Royer, J., Analyse haute fréquence de l’équation de Helmholtz dissipative (2010)
[27] Schenck, E., Energy decay for the damped wave equation under a pressure condition, Comm. Math. Phys., 300, 375-410 (2010) · Zbl 1207.35064
[28] Schenck, E., Exponential stabilization without geometric control, Math. Research Letters, 18, 379-388 (2011) · Zbl 1244.93144
[29] Sjöstrand, J., Asymptotic distributions of eigenfrequencies for damped wave equations, Publ. RIMS, 36, 573-611 (2000) · Zbl 0984.35121
[30] Toth, John A.; Zelditch, Steve, \(L^p\) norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré, 4, 2, 343-368 (2003) · Zbl 1028.58028
[31] Zelditch, Steve, Current developments in mathematics, 2009, 115-204 (2010) · Zbl 1223.37113
[32] Zworski, Maciej, Semiclassical analysis, 138 (2012) · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.