×

Effects of time delayed position feedback on a van der Pol-Duffing oscillator. (English) Zbl 1024.37028

Summary: The mechanism for the action of time delay in a nonautonomous system is investigated. The original mathematical model under consideration is a van der Pol-Duffing oscillator with excitation. A delayed system is obtained by adding both linear and nonlinear time delayed position feedbacks to the original system. Functional analysis is used to change the delayed system into a functional differential equation (FDE). The time delay is taken as a variable parameter to investigate its effect on the dynamics of the system such as the stability and bifurcation of an equilibrium point, phase locked (periodic) and phase shifting solution, period-doubling, quasiperiodic motion and chaos. A periodic solution expressed in the closed form with the aid of the center manifold and averaging theorem is found to be in good agreement with that obtained by numerical simulation. Two routes to chaos are found, namely period-doubling bifurcation and torus breaking.
The results obtained in this paper show that time delay may be used as a simple but efficient “switch” to control motions of a system: either from order motion to chaos or from chaotic motion to order for different applications.

MSC:

34K11 Oscillation theory of functional-differential equations
93C23 Control/observation systems governed by functional-differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93B52 Feedback control
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] V.I. Arnold, Ordinary Differential Equations, MIT Press, Cambridge, MA, 1978.; V.I. Arnold, Ordinary Differential Equations, MIT Press, Cambridge, MA, 1978.
[2] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1980.; H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1980. · Zbl 0491.70001
[3] R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, Nonlinear Physics, Harwood, Chur, Switzerland, 1988.; R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, Nonlinear Physics, Harwood, Chur, Switzerland, 1988.
[4] F.C. Moon, Chaotic and Fractal Dynamics, Wiley/Interscience, New York, 1992.; F.C. Moon, Chaotic and Fractal Dynamics, Wiley/Interscience, New York, 1992.
[5] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1993.; J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1993. · Zbl 0515.34001
[6] van der Pol, B.; Van der Mark, J., Frequency demultiplication, Nature, 120, 363-364 (1927)
[7] Ueda, Y.; Akamatsu, N., Chaotically transitional phenomena in the forced negative resistance oscillator, IEEE Trans. Circuits Syst., CAS-28, 217-223 (1981)
[8] Cartwright, M. L.; Littlewood, J. E., On nonlinear differential equations of the second order. I. The equation \(ÿ+k(1−y^2)ẏ+y=hλk cos(λt+a),K\) large, J. Lond. Math. Soc., 20, 180-189 (1945) · Zbl 0061.18903
[9] Cartwright, M. L., Forced oscillations in nearly sinusoidal systems, J. Inst. Elec. Eng., 95, 88-94 (1948)
[10] Gilles, A. W., On the transformation of singularities and limit cycles of the variational equations of van der Pol, Quat. J. Mech. Appl. Math., 7, 152-167 (1954) · Zbl 0055.31901
[11] Holmes, P. J.; Rund, D. A., Phase portraits and bifurcations of the nonlinear oscillator \(ẍ+(α+γx^2)ẋ+βx+δx^3=0\), Int. J. Nonlinear Mech., 15, 449-458 (1980) · Zbl 0453.70015
[12] Levin, M., Qualitative analysis of the periodically forced relaxation oscillations, Mem. AMS, 214, 1-147 (1981) · Zbl 0448.34032
[13] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019
[14] Cuomo, K. M.; Oppenheim, A. V., Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., 71, 65-68 (1993)
[15] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428 (1992)
[16] Gregory, D. V.; Rajarshi, R., Chaotic communication using time-delayed optical systems, Int. J. Bifurc. Chaos, 9, 2129-2156 (1999)
[17] Wischert, W.; Wunderlin, A.; Pelster, A.; Olivier, M.; Groslambert, J., Delay-induced instabilities in nonlinear feedback systems, Phys. Rev. E, 49, 203-219 (1994)
[18] Tass, P.; Kurths, J.; Rosenblum, M. G.; Guasti, G.; Hefter, H., Delay-induced transitions in visually guided movements, Phys. Rev. E, 54, R2224-R2227 (1996)
[19] Nayfeh, A. H.; Chin, C. M.; Pratt, J., Perturbation methods in nonlinear dynamics—applications to machining dynamics, J. Manuf. Sci. Eng., 119, 485-493 (1997)
[20] Cushing, J. M., Periodic solutions of Volterra’s population with hereditary effects, SIAM J. Appl. Math., 31, 251-263 (1976) · Zbl 0334.92026
[21] Liao, X.; Yu, J., Robust stability for interval Hopfield neutral networks with time delay, IEEE Trans. NN, 9, 5, 1042-1046 (1998)
[22] Cao, J., Periodic oscillation and exponential stability of delayed CNNs, Phys. Lett. A, 270, 157-163 (2000)
[23] Wulf, V.; Ford, N. J., Numerical Hopf bifurcation for a class delay differential equations, J. Comput. Appl. Math., 115, 601-616 (2000) · Zbl 0946.65065
[24] Reddy, D. V.R.; Sen, A.; Johnston, G. L., Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks, Physica D, 144, 335-357 (2000) · Zbl 0973.34061
[25] Campbell, S. A.; Bélair, J.; Ohira, T.; Milton, J., Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback, Chaos, 5, 640-645 (1995) · Zbl 1055.34511
[26] Campbell, S. A.; Bélair, J.; Ohira, T.; Milton, J., Limit cycles, tori, and complex dynamics in a second-order differential equations with delayed negative feedback, J. Dyn. Diff. Eqs., 7, 213-236 (1995) · Zbl 0816.34048
[27] Bélair, J.; Campbell, S. A., Stability and bifurcations of equilibria in multiple-delayed differential equation, SIAM J. Appl. Math., 54, 1402-1424 (1994) · Zbl 0809.34077
[28] D. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther, D.V.R. Reddy, A. Sen, G.L. Johnston, Delay Equations, Springer, New York, 1995.; D. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther, D.V.R. Reddy, A. Sen, G.L. Johnston, Delay Equations, Springer, New York, 1995. · Zbl 0826.34002
[29] Xu, J.; Lu, Q. S., Hopf bifurcation of time-delay Liénard equations, Int. J. Bifurc. Chaos, 9, 939-951 (1999) · Zbl 1089.34545
[30] Chan, H. S.Y.; Chung, K. W.; Xu, Z., A perturbation-incremental method for strongly non-linear oscilltors, Int. J. Non. Mech., 31, 59-72 (1996) · Zbl 0864.70015
[31] Chan, H. S.Y.; Chung, K. W.; Qi, D. W., Some bifurcation diagrams for limit cycles of quadratic differential systems, Int. J. Bif. Chaos, 11, 197-206 (2001) · Zbl 1090.37558
[32] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, New York, 1979.; A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, New York, 1979. · Zbl 0418.70001
[33] Uçr, A., On the chaotic behaviour of a prototype delayed dynamical system, Chaos, Soliton Fractals, 16, 187-194 (2003) · Zbl 1033.37020
[34] Ott, E.; Grebogi, C.; Yorke, A., Controlling chaos, Phy. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[35] K.W. Chung, C.L. Chan, J. Xu, An efficient method for switching branches of period-doubling bifurcation of strongly non-linear autonomous oscillators with many degrees of freedom, J. Sound Vibr., in press.; K.W. Chung, C.L. Chan, J. Xu, An efficient method for switching branches of period-doubling bifurcation of strongly non-linear autonomous oscillators with many degrees of freedom, J. Sound Vibr., in press. · Zbl 1236.70004
[36] Reddy, D. V.R.; Sen, A.; Johnston, G. L., Time delay effects on coupled limit cycle oscillators at Hopf bifurcation, Physica D, 129, 15-34 (1999) · Zbl 0981.34022
[37] Krstic, M.; Krupadanam, A.; Jacobson, C., Self-tuning control of a nonlinear of combustion instabilities, IEEE Trans. Contr. Syst. Tech., 7, 424-436 (1999)
[38] Cammarata Fichera, L.; Fichera, A.; Pagano, A., Neural prediction of combustion instability, Appl. Energy, 72, 513-528 (2002)
[39] Wirkus, S.; Rand, R., The dynamics of two coupled van der Pol oscillators with delay coupling, Nonlin. Dynamics, 30, 205-221 (2002) · Zbl 1021.70010
[40] Ushio, T., Synthesis of synchronized chaotic systems based on observers, Int. J. Bifurc. Chaos, 9, 541-546 (1999) · Zbl 0941.93533
[41] Jackson, E. A.; Grousu, I., An open-plus-closed-loop (POCL) control of complex dynamic systems, Physica D, 85, 1-9 (1995) · Zbl 0888.93034
[42] Oueini, S. S.; Chin, C. M.; Nayfeh, A. H., Dynamics of a cubic nonlinear vibration absorber, Nonlin. Dyn., 20, 283-295 (1999) · Zbl 0966.70014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.